

Incidence of Cytomegalovirus IgG antibodies and the role of Matrix Metalloprotinase-13 (MMP-13)-as a novel tumor marker- for Diagnosis of Breast Cancer in Egyptian Females

A Thesis Submitted for the Degree of Ph.D in Science (Microbiology)

BY

Aliaa Mohamed Seif Elden Abd Elkader

MSc in Microbiology (2014) Supervised by

Professor/ Ahmed Barakat Barakat

Professor of Microbiology Faculty of Science - Ain ShamsUniversity

Professor/ Nahla Mohamed Zakaria Yousef

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Dina Aly Mohamed Aly

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Omar Alfarouk Rabiee

Lecturer of Microbiology Faculty of Science - Ain Shams University

> Microbiology Department Faculty of Science Ain Shams University (2019)

Approval sheet (Ph.D.Thesis)

Name: Aliaa Mohamed Seif Elden Abd Elkader

Title: Incidence of Cytomegalovirus IgG antibodies and the role of Matrix Metalloprotinase-13 (MMP-13)-as a novel tumor marker- for Diagnosis of Breast Cancer in Egyptian Females

Supervisions committee:

Prof Dr/ Ahmed Barakat Barakat

Professor of Microbiology-Faculty of Science -Ain Shams University

Prof Dr/ Nahla Mohamed Zakaria Yousef

Professor of Clinical Pathology-Faculty of Medicine - Ain Shams University

Dr/ Dina Aly Mohamed Aly

Assistant Professor of Clinical Pathology-Faculty of Medicine - Ain Shams University

Dr/ Omar Alfarouk Rabiee

Lecturer of Microbiology-Faculty of Science - Ain Shams University

Examination committee:

Prof Dr/ Neveen Ahmed Abdulhafeez

Professor of Clinical Pathology-Faculty of Medicine - Banha University

Prof Dr: Aly Fahmy Mohamed El-Sayed

Head of Research & Development Sector, Holding Company For Production of Vaccines, Sera And Drugs (VACSERA)

Prof Dr/ Ahmed Barakat Barakat

Professor of Microbiology-Faculty of Science -Ain Shams University

Prof Dr/ Nahla Mohamed Zakaria Yousef

Professor of Clinical Pathology-Faculty of Medicine - Ain Shams University

(2019)

سِمِ اللهِ الرَّحْمَٰ الرَّحِيمِ قَالُو السُبِحَانَكَ لاَ عِلْمَ قَالُو السُبِحَانَكَ لاَ عِلْمَ لَنَا إلاَّ مَا عَلَّمْتَنَا إِنِّكَ النَّا إلاَّ مَا عَلَّمْتَنَا إِنِّكَ الْمَا الْمَلِيمُ الْحَكِيمُ

صدق الله العظيم

سورة البقره ايه 32

Declaration

I declare that this thesis has been composed by me and that the work of which is a record has done by me. It has not been submitted for a degree at this or any other university.

Aliaa Mohamed Seif Elden Abd Elkader

Dedication

To my family

My great father and my kind mother

Thank you for supporting me with kindness, patience and love

Acknowledgement

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor**/ **Ahmed Barakat Barakat**, Professor of Microbiology, Faculty of Science, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Professor**/ **Nahla Mohamed Zakaria**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I am deeply thankful to **Dr/ Dina Aly Mohamed,** Assistant Professor of Clinical
Pathology, Faculty of Medicine, Ain Shams
University, for her kind care, continuous
supervision, valuable instructions, constant help
and great assistance through out this work.

I wish to introduce my deep respect and thanks to **Dr/Omar Alfarouk Rabiee**, Lecturer of Microbiology, Faculty of Science, Ain Shams University, for his kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all the patients who participated in this study.

List of Contents

Title	Page No.
List of Abbreviations	I
List of Tables	III
List of Figures	IV
Chapter I	
Introduction	1
Aim of the Work	s
Chapter II	
Review of literature	
- Section A: Breast cancer	4
A. Signs and symptoms	4
B. Risk factors	5
C. Screening and Diagnosis	6
D. Clinical stages	
-	
ε	
A. MMP-13 Gene	·

B.	Expression of MMP-1316
C.	Activation of MMP-1316
D.	MMP-13 function
E.	Role of MMP-13 in pathological conditions17
- Sect	ion C: Cytomegalovirus18
Chapter 2	Ш
Subjects	and Methods22
I. Sub	jects
II. Me	ethods
	llection of blood samples for laboratory tests23
B. Me	easurment of CA15.3 levels23
C. Ass	sessment of cytomegalovirus (CMV) IgG24
D. Me	easurment of Human MMP-13 levels28
E. Sta	tistical methodology32
Chapter 2	IV
Results	34
	parative statistical analysis between the three studied
•	ps regarding MMP-13 and CA15.3 using Kruskall-
Wall	
	ing Wilcoxn Rank Sum test
	parative statistical analysis between group I and group
	sing Wilcoxn Rank Sum test
	parative statistical analysis between group II and
	p III using Wilcoxn Rank Sum test
	elation between MMP-13 and CA15.3 in the different
studi	ed groups38

•	CMV IgG status in the three studied groups	39
•	Diagnostic performance of MMP-13 levels	40
•	Diagnostic performance of CA15.3 levels	41
Chaj	pter V	
Disc	ussion	43
Chaj	pter VI	
Sum	mary, Conclusion and Recommendations .	52
Chaj	pter VII	
Refe	rences	55
Aral	oic Summary	1

List of Abbreviations

ASCO American Society of Clinical Oncology

AUC Area under the curve

BKV Polyomavirus hominis1

CA15.3 Carbohydrate antigen15.3

CA 27.29 Carbohydrate antigen 27.29

CEA Carcino-embryonic antigen

CMV Cytomegalovirus

CT Scan Computerized Tomography Scan

EBV Epstein-Barr virus

ECLIA Electro-chemiluminescence immunoassay

ECM Extracellular matrix

ELISA Enzyme linked immunosorbent assay

ER- Estrogen receptor-negative

ER+ Estrogen receptors positive

FNAC Fine needle aspiration and cytology

HBV Hepatits B virus

HCMV Human Cytomegalovirus

HCV Hepatits C virus

HCL Hydrochloric acid

HHV-5 Human herpesvirus 5

HIV Human immunodeficiency virus

HMTV/MMTV Human Mammary Tumor Virus/ Mouse

mammary tumor virus

HPV Human papilloma virus

HRP-conjugate Horseradish peroxidase

HTLV-1 Human T-cell lymphotropic *virus*

JCV John Cunningham virus

KSHV Kaposi's Sarcoma-associated Herpes Virus

MCV Markel cell polyomavirus

MMPs Matrix metalloproteinases

MMP-13 Matrix Metalloproteinase-13

MUC Mucin

PBS Phosphate buffer saline

PET scans Positron emission tomography

PR+ Progesterone receptors positive

ROC Receiver operating characteristic

SPSS Statistical Package for the Social Sciences

SV40 Simian *virus*40

TMB reagent 3,3',5,5'-Tetramethylbenzidine

TNM system Tumor, lymph node, metastasis scoring system

List of Tables

Table No.	Title	Page
Table (a):	Types of Matrix Metalloproteinases	13
Table (1):	Comparative statistical analysis between the three studied groups regarding MMP-13 and CA15.3 using Kruskall-Wallis test	35
Table (2):	Comparative statistical analysis between group I and group II using Wilcoxn Rank Sum test	36
Table (3):	Comparative statistical analysis between group I and group III using Wilcoxn Rank Sum test	37
Table (4):	Comparative statistical analysis between group II and group III using Wilcoxn Rank Sum test	38
Table (5):	Correlation between MMP-13 and CA15.3	38
Table (6):	CMV IgG status in the three studied groups	39
Table (7):	Diagnostic performance of MMP-13 levels	40
Table (8):	Diagnostic performance of CA15.3 levels	41

List of Figures

Figure No.	Title	Page
Fig. (a):	Structural Domains of MMPs adopted from	15
Fig. (b):	Cytomegalovirus	18
Fig. (c):	Detection of CA15.3 by ECLIA	24
Fig. (1):	Median levels of MMP-13 in the three studied groups	35
Fig. (2):	Median levels of CA15-3 in the three studied groups	36
Fig. (3):	ROC curve analysis showing the diagnostic performance of MMP-13 for discriminating patient groups from each other	40
Fig. (4):	ROC curve analysis showing the diagnostic performance of CA15.3 for discriminating patient groups from each other	42

Aim of the Work

The aim of this study was:

- ❖ To investigate the role of infection as a cause of carcinogenesis by estimating the incidence of anti-cytomegalovirus IgG antibodies in breast cancer patients.
- ❖ To evaluate the use of matrix metalloproteinase-13 as a potential tumor marker in breast cancer.

Chapter I

Introduction

Breast cancer is the most common non-skin cancer amongst women worldwide and is the fifth leading cause of cancer-related mortality overall. Worldwide, breast cancer is the deadliest cancer amongst females in developing countries, causing about half a million total deaths each year (*Power et al.*, 2018). Considerations which influence the risk of developing breast cancer include age, race, family history, genetics, lifestyle, and hormonal factors.

Factors that are associated with an increased risk of breast cancer include: being female, increasing age, a personal history of breast conditions, a family history of breast cancer, exposure to radiation, obesity and post-menopausal hormone therapy (*Noor et al.*, 2016).

The development of breast cancer occurs as a result of numerous internal and external factors. Recently, the role of infection during carcinogenesis has been studied in several types of oncological diseases. Human herpesvirus is known for its oncogenic potential. Cytomegalovirus (CMV) and Epstein bar virus (EBV) of the *Herpesviridae* family have been implicated as a cause of breast cancer. Recent studies have detected high antibody titer of CMV in patients newly diagnosed with breast cancer (*Mohamed et al.*, 2014).

A test for tumor markers is the most convenient method to screen for breast cancer. However, the tumor markers that are currently available for breast cancer