PHYSIOLOGICAL AND IMMUNOLOGICAL STUDY ON RABBITS: EFFECTS OF DIFFERENT SIZE GROUPS AND SELECTIVE FEEDING

By

ESRAA MOHAMED ABD ELMEGEED ALI

B.Sc. Agric. Sc. (Poultry Production), Cairo University, 2008 M.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

in
Agricultural Science
(Poultry Physiology)

Department of Poultry Production
Faculty of Agriculture
Ain Shams University

Approval Sheet

PHYSIOLOGICAL AND IMMUNOLOGICAL STUDY ON RABBITS: EFFECTS OF DIFFERENT SIZE GROUPS AND SELECTIVE FEEDING

By

ESRAA MOHAMED ABD ELMEGEED ALI

B.Sc. Agric. Sc. (Poultry Production), Cairo University, 2008 M.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2014

This thesis for Ph.D. degree has been approved by:
Dr. Khaled Hassan Mostafaa El-Kholy
Prof. of Poultry Physiology, Faculty of Agriculture, Damitta University
Dr. Nematallah Gamal El-Dien Mohamed Ali
Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams University
Dr. Ayman Mohamed Hassan Ahmed
Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams University
Dr. Ibrahim El-Wardany El-Sayed Hassan
Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, Ain
Shams University

Date of Examination: 8/10/2019

PHYSIOLOGICAL AND IMMUNOLOGICAL STUDY ON RABBITS: EFFECTS OF DIFFERENT SIZE GROUPS AND SELECTIVE FEEDING

By

ESRAA MOHAMED ABD ELMEGEED ALI

B.Sc. Agric. Sc. (Poultry Production), Cairo University, 2008 M.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2014

Under the supervision of:

Dr. Ibrahim El- Wardany El- Sayed Hassan

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ayman Mohamed Hassan Ahmed

Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Hoda Mohamed Abd El-Raouf Shabaan

Prof. Head of Research of poultry management, Rabbit, Turkey and Fowl Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture

ABSTRACT

Esraa Mohamed Abd EL Megeed Ali: Physiological and Immunological Study on Rabbits. Unpublished Doctor of Philosophy Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2019.

A total number of 108 APRI weaning rabbits were investigated. They were maintained from weaning at 5 weeks to 12 weeks of age. Rabbits were randomly divided into three treatments (in 3 replicate, 12 rabbits each). Each treatment was divided into two groups with two densities. The first group housed by 4 rabbits in cage 60 cm² and second group housed by 8 rabbits in cage 120 cm². Each treatment has an average weight of (560g±10). Animals were assigned to three feeding groups The 1st group was fed the basal diet (control) while the 2nd and 3rd groups were fed the basal diet without hay plus % hay in control diet, the basal diet without hay plus hay fed ad libitum. The behaviour of the rabbits was video recorded in cages for 24 h. During the night, light wasn't used to avoid disturbing the nictameral activities of the rabbits, cameras have led lamb to light at the night.

The results showed that housing rabbits on large group size (8 rabbits/cage) and rabbits fed hay ad libtum for growing rabbits could improve behaviour, decrease the mortality rate and increase the dressing weight that also lead to increase the economical efficiency. Additionally, the current study confirmed that the rabbits housed in large group and fed hay ad libtum did not have any negative influence on growth performance traits and blood parameters during the whole experimental period.

It was concluded that housing growing rabbits on large group 8 rabbits in cage ($120~\rm{cm}^2$) and fed hay ad libtum; decrease mortality rate and increase the economical efficiency for the breeder.

Key words: rabbit, hay, group size, behaviour, economical efficiency.

ACKNOWLEDGEMENTS

First of all, all praises and limitless thanks to *Allah* the beneficent and merciful who gave me the capability to work this study.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Ibrahim El-Wardany El-sayed Hassan,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for suggesting the problem, continued guidance and encouragement during the various stages of this study. His invaluable advices and endlessly patience while writing and revising the manuscript are greatly appreciated.

My deep gratitude is extended to **Prof. Dr. Ayman Mohamed Hassan,** Professor of Poultry Physiology, Faculty of Agriculture, Ain Shams University for supervision, encouragement and help during the course of my study.

Hearty thanks and my deep gratitude are due to **Prof. Dr. Hoda**Mohamed Abd El-Raouf Shabaan, Head of Research of Animal husbandry, Department of Rabbit, Turkey and Water Fowl Breeding, Animal Production Research Institute, Agriculture Research Center for her valuable supervision, appreciate help, guidance, providing the facilities, encouragement throughout the different phases of this work and writing of this thesis. She gave me a lot of her experience.

My deep thanks and gratitude is extended to **Prof. Dr. El-Sayd Mahfoz Abdelkafy,** Head of Research of Animal husbandry, Animal Production Research Institute, Agriculture Research Center for his excellent idea of this work, help in statistical analysis of raw data, help in all blood analysis, studing the behaviours of rabbits and analysis them, encouragement throughout the different phases of this work and writing of this thesis. I truly appreciate his effort.

My deep gratitude is extended to **Prof. Dr. Wail Awad Mohamed Morsi,** Head of Research of Animal husbandry, Animal

Production Research Institute, Agriculture Research Center for his help in practical part for this thesis and provided me with materials and hay. I truly appreciate his effort.

I would also like to thank all the staff members of the Poultry Production Department, those of Rabbit and Turkey and Water Fowl Breeding Department Animal Production Research Institute, Agriculture Research Center, and Faculty of Agriculture Ain Shams Univ., for their great help and kind encouragement during this study.

Last but not least, hearty thanks and sincere gratitude for the Souls of my lovely Mother and my dear Father for their praying for my success, continuous support they lovely offered, help and credible encouragement. My deepest gratitude are due to my lovely Brothers, **Gamal and Ibrahim**, **my kind husbandry Ramy and my lovely sons Hussein and Mohamed** for their support and creating quite atmosphere all the time throughout the different periods of this work.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATION	VIII
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
I. Group Size on	4
I.1. Effect of group size on performance traits	4
I.1.1 body weight and daily weight gain	4
I.1.2. feed Intake	10
I.1.3. Feed conversion ratio.	12
I.2. metabolites and oxidative parameters	13
I.3. behaviour	16
I.4. carcass traits	22
I.5. mortality rate (%)	26
I.6. Economical efficiency	27
II. Selective feeding on	27
II.1. Effect of selective feeding on performance traits	30
II.2. Metabolites and oxidative parameters	30
II.3. behaviour	32
II.4. carcass traits	35
II.5. Mortality rate (%)	35
III. MATERIALS AND METHODS	37
1. Experimental design and animals	37
2. Experimental diets	38
3. Measurements	39
3.1. Performance traits	39
3.1.1. Body weight and body weight gain	39
3.1.2. Feed intake	40
3.1.3. Feed conversion ratio	40

3.1.4. Performance index	40
3.2. Metabolites and oxidative parameters	41
3.3. Behavioural recordings	41
3.4. Carcass traits	42
3.5. Mortality rate (%)	43
3.6. Economic efficiency	43
4. Statistical analysis	43
IV. RESULTS AND DISCUSSION	45
I-Size Group	45
I.1. Productive performance	45
I.1.1. Body weight and weight gain	45
I.1.2. Feed intake (FI)	47
I.1.3. Feed conversion ratio (FCR) and performance index (%)	48
I.2. Metabolites and oxidative parameters	50
I.3. Behaviour	51
I.4. Carcass traits	52
I.5. Mortality rate	53
I.6. Economical effeciancy	55
II. Selective feeding	55
II.1. Productive performance	55
II.1.1. Body weight and weight gain	55
II.1.2.Feed intake	57
II.1.3. Feed conversion ratio (FCR) and performance index (%)	58
II.2. Metabolic and oxidative blood parameters	60
II.3. Behaviour	61
II.4. Carcass traits	62
II.5. Mortality rate	63

II.6. Economic Efficiency	64
III- Interaction for using size groups with selective feeding	65
III.1. Productive performance	65
III.1.1. Body weight and weight gain	65
III.1.2.Feed intake	66
III.1.3. Feed conversion ratio and performance index (%)	67
III.2. Metabolic and oxidative blood parameters	69
III.3. Behaviour	71
III.4. Carcass traits	73
III.5. Mortality rate	74
III.6.Economic Efficiency	75
V. SUMMARY AND CONCLUSION	77
VI. REFERENCES	85
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	The experimental design	38
2	Composition and Calculated analysis of experimental	
	diet.	
		39
3	Rabbit ethogram used in this study (based on Gunn	
	and Morton (1995).	42
4	Effect of using different size groups on live body	
	weight of APRI rabbits during different experimental	
	periods.	45
5	Effect of using different size groups on daily weight	
	gain of APRI rabbits during different experimental	
	periods.	46
6	Effect of using different size groups on daily feed	
	intake of APRI rabbits during different experimental	
	periods.	47
7	Effect of using different size groups on feed	
	conversion ratio of APRI rabbits during different	
	experimental periods.	48
8	Effect of using different size groups on performance	
	index of APRI rabbits during different experimental	
	periods.	49
9	Effect of using different size groups on oxidative rate	
	of APRI rabbits at week of age.	50
10	Effect of using different size groups on metabolic	
	blood parameter of APRI rabbits at 12 week of age.	51
11	Effect of using different size groups on behavioural	
	parameters of APRI rabbits during 6-7 and 10-12	52

	week of age.	
12	Effect of different size groups on carcass traits in	
	APRI rabbits at 12 week of age.	53
13	Effect of using different size groups on Input-output	
	analysis and economical efficiency of APRI rabbits	
	during experimental period.	55
14	Effect of selective feeding on live body weight of	
	APRI rabbits in different weeks of age.	56
15	Effect of selective feeding on daily weight gain of	
	APRI rabbits during different experimental periods.	57
16	Effect of selective feeding on daily feed intake of	
	APRI rabbits during different experimental periods.	58
17	Effect of selective feeding on feed conversion ratio of	
	APRI rabbits during different experimental periods.	59
18	Effect of selective feeding on performance index of	
	APRI rabbits during different experimental periods.	59
19	Effect of selective feeding on metabolic parameter of	
	APRI rabbits	60
20	Effect of selective feeding on oxidative parameters of	
	APRI rabbits	61
21	Effect of selective feeding on behavioural parameters	
	of APRI rabbits during 6-7 and 10-12 week of age.	62
22	Effect of different dietary sources on carcass traits of	
	APRI rabbits at 12 weeks of age.	63
23	Input-output analysis and economic efficiency of	
	different treatments.	64
24	Effect of interaction for using different size groups	
	with selective feeding on body weight of APRI	
	rabbits during different experimental periods.	65
25	Effect of interaction for using different size groups	
	with selective feeding on weight gain of APRI rabbits	
	during different experimental periods.	66

26	Effect of interaction for using different size groups	
	with selective feeding on daily feed intake of APRI	
	rabbits during different experimental periods.	67
27	Effect of interaction for using different size groups	
	with selective feeding on feed conversion ratio of	
	APRI rabbits during different experimental periods.	68
28	Effect of interaction for using different size groups	
	with selective feeding on feed conversion ratio of	
	APRI rabbits during different experimental periods.	69
29	Effect of interaction for using different size groups	
	with selective feeding on metabolic parameter of	
	APRI rabbits	70
30	Effect of interaction for using different size groups	
	with selective feeding on oxidative parameters of	
	APRI rabbits	70
31	Effect of interaction for using different size groups	
	with selective feeding on behavioural parameters of	
	APRI rabbits during 6-7 and 10-12 week of age.	72
32	Effect of interaction for using different size groups	
	with selective feeding on carcass traits of APRI	
	rabbits at 12 weeks of age.	73
33	Effect of interaction for using different group size	
	and selective feeding on economic efficiency of	
	APRI rabbits	76

LIST OF FIGURES

Figure		Page
1	Effect of using different size groups on total	
	mortality rate of growing APRI rabbits by the end of	
	experimental periods.	54
2	Effect of using selective feeding on total mortality	
	rate of growing APRI rabbits by the end of	
	experimental periods.	64
3	Effect of interaction for using different size group	
	and selective feeding on total mortality rate of	
	growing APRI rabbits by the end of experimental	
	periods.	75

LIST OF ABBREVIATIONS

ARC : Agriculture Research Center

APRI : Animal Production Research Institute

BW : Body weight

BWG : Body weight gain

°C : The degree Celsius

C : Control

Cm : Centimeter

CP : Crud Protien

DE : Digestive energy

DFCR : Daily feed conversion ratio

DFI : Daily Feed Intake

DM : Dry Mater

DoP% The dressing out percentage

DWG : Daily Weight Gain

EE% : The economical efficiency

FC: Feed conversion

FCR : Feed conversion ratio

FI : Feed Intake

G: Group

G: Gram

H : Hour

 H_2O_2 : Hydrogen peroxidase

Kcal : Kilo calorie

Kg : Kilo gram

LBW: Live body weight

L.E : Liver Egyptian

M.E. : Metabolizable energy

Mg : Milligram