STUDIES ON THE EFFECT OF SOME MEDICINAL PLANTS ON GROWTH AND ACTIVITY OF BACTERIA USED IN FOOD PROCESSING

By

YASMIN RAWHY ABOU EL-AZAB

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Food Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON THE EFFECT OF SOME MEDICINAL PLANTS ON GROWTH AND ACTIVITY OF BACTERIA USED IN FOOD PROCESSING

By

YASMIN RAWHY ABOU EL-AZAB

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2005

This thesis for M.Sc degree has been approved by:

Dr.	Hassa	n Hassan	Kha	laf			•••••	•••••	
	Prof.	Emeritus o	f Fo	od Scie	ence, Faci	ulty o	f Agriculture,	Moushtol	hor
	Benha	a University	y						
Dr.	Ahme	ed Yousif (Sebr	il		•••••	•••••		••••
	Prof.	Emeritus	of	Food	Science	and	Technology,	Faculty	of
	Agric	ulture, Ain	Sha	ms Uni	versity				
Dr.	Youse	eif Morsy l	El -]	Kenan	\mathbf{y}		••••		••••
	Prof.	Emeritus	of	Dairy	Science	and	Technology,	Faculty	of
	Agric	ulture, Ain	Sha	ms Uni	versity				
Dr.	Moha	med Fara	g Kl	nallaf					••••
	Prof.	Emeritus	of	Food	Science	and	Technology,	Faculty	of
	Agric	ulture, Ain	Sha	ms Uni	versity				

Date of Examination: / /2019

STUDIES ON THE EFFECT OF SOME MEDICINAL PLANTS ON GROWTH AND ACTIVITY OF BACTERIA USED IN FOOD PROCESSING

By

YASMIN RAWHY ABOU EL-AZAB

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2005

Under the supervision of

Dr. Mohamed Farag Khallaf

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Youseif Morsy El - Kenany

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Abdel Fattah Abdel Kareem Abdel Fattah

Associate Prof. of Food Science and Technology, Food Science Dept., Faculty of Agriculture, Ain Shams University.

ABSTRACT

YASMIN RAWHY ABOU EL-AZAB "Studies on the Effect of some Medicinal Plants on Growth and Activity of Bacteria Used in Food Processing". Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2019

The present study was conducted to evaluate and to compare the antimicrobial activity of clove (Syzygium aromaticum) and thyme (Thymus vulgaris) ethanolic extracts. Different concentrations of ethanolic extracts were prepared and antimicrobial activity was determined against some bacterial, yeast and mold strains. The antimicrobial activity of examined extracts at different concentrations was determined against different cell population of tested strains and expressed as diameter of inhibition zone. Results showed that all clove and thyme ethanolic extracts were markedly inhibited the growth of all tested strains, however, the inhibition effect was differed with regard to the concentration of ethanolic extract as well as the type of tested microorganism. Generally, clove ethanolic extract had stronger antimicrobial activity rather than that of thyme ethanolic extract. Subsequently, clove and thyme are an extremely strong antimicrobial agent with use full potential applications in food processing as a natural safe instead of synthetic antimicrobial agents.

The prepared fermented beef sausage samples were containing different concentrations of dry clove and thyme (2.0 and 4.0%) and compared with control samples prepared without medicinal plant mixture; also fermented beef sausage samples were prepared with different starter cultures as follows: a starter (A) component of *Str. thermophilus*, *L.bulgaricus* and *P. pentosaceus*; a starter (B) component of *L. lactis*, *L.cremoris* and *P. pentosaceus* and their different control samples were prepared without medicinal plant mixture and cold stored at (4°C±2 for 15 day). Chemical, physical, microbiological analysis and sensory evaluation were discussed, initially and periodically during storage of this products. The results showed that, clove and thyme can be practical to protect food and consumers from the risk of contamination by pathogenic

and food spoilage microorganisms, to extend food shelf-life, to reduce food waste and to use in hurdle technologies at low temperature.

Key words: Clove, Thyme, Extraction, Antimicrobial activity, fermented sausage, Lactic acid bacterial Strains

ACKNOWLEDGMENT

All praises are due to **Allah**, who blessed me with those kind professors and colleagues, who gave me support to produce this thesis.

I would like to express my deep and sincere gratitude to my supervisor **Prof. Dr. Mohamed Farag Khallaf**, Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for supervision, guidance, his patience and his incredible as well as valuable assistance, continuous encouragement, valuable advice and constructive comments.

I am greatly indebted to **Prof. Dr. Youseif Morsy El - Kenany** Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for continuous supervision and for good research and aid facilities. He supported me with constructive supervision, valuable discussion and criticism throughout the course of this thesis.

Deep thanks and appreciation to **Dr. Abdel Fattah A. Abdel Fattah,** Associate Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University; for his supervision, advice and meticulous observation throughout the work.

Deep thanks and appreciation to my friend Shimaa Abo-Taleb,; for his in-part helpness in my work this thesis and meticulous observation throughout the work.

Words fail me to express my appreciation to **my mother** for their support and help me through my life and my study, as well as to **my dear brothers** and **sisters** for their support in all my life. Special thanks should be extending to **my late father**; I dedicate this work for his spirit in the other world.

I gratefully acknowledged **all staff members** of the Department of Food Science, Faculty of Agriculture, Ain Shams University for their support, personal encouragement and valuable helps in this work, as well as to my **friends** for their support.

CONTENTS

	Page
LIST OF TABLES	Xi
LIST OF FIGURES	Xiv
LIST OF ABBREVIATIONS	xvi
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Some aromatic medicinal plants	4
2.2. Different plant extracts	6
2.2.1. Crud extract	6
2.2.1.1. Alcoholic extract.	6
2.2.1.2. Water extract.	6
2.3. The potency of plant extracts as antimicrobial agents	7
2.4. Mode of action of plant extracts	7
2.5. Antimicrobial activity of some plant extracts	8
2.6. Lactic acid bacteria as bio-preservatives used in the food	
industry	10
2.7. Meat fermentation	11
2.7.1. Fermented sausage	11
2.7.2. The role of lactic acid bacteria in processed dry fermented	
sausage	12
2.7.3. Role of antimicrobial substance on pathogenic bacteria	
during repining dry fermented sausage	12
2.7.4. Change in physiochemical parameters during ripening	
sausage	13
3. MATERIALS AND METHODS	15
3.1. MATERIALS	15
3.1.1 Beef meat used for preparing fermented sausage	15
3.1.2. Additive ingredients	15
3.1.3. Strains used to study the Antimicrobial Activity	15
3.1.4. Microbiological media	15

3.1.4.1. Aerobic plate count medium	15
3.1.4.2. Potato dextrose agar medium	16
3.1.4.3. Violet Red Bile Lactose Agar medium	16
3.1.4.4. Baird- Parker agar medium	17
3.1.4.5. Bacteriological buffered peptone water	17
3.1.4.6. Tetrathionate broth base medium	17
3.1.4.7. Xylose lysine desoxycholate agar medium	18
3.1.4.8. Bismuth Sulphite agar medium	19
3.2. METHODS	19
3.2.1. Preparation of clove and thyme ethanolic extracts	19
3.2.2. Determination of antimicrobial activity of clove and	
thyme ethanolic extracts	19
3.2.2.1. Preparation of inoculates	19
3.2.3. Screening of the antimicrobial activity against bacterial	
and yeast strains	20
3.2.4. Determination of the minimal inhibitory concentrations	
(MICs), bacteriostatic and bactericidal effects	21
3.2.5. Determination of antifungal activity	21
3.2.6. Preparation of fermented beef sausage	22
3.2.7. Analytical methods.	23
3.2.7.1. Chemical analysis	23
3.2.7.2. Total volatile nitrogen (TVN)	23
3.2.7.3. Thiobarbituric acid Reactive substances value	
(TBARS)	23
3.2.7.4. Physical analysis of prepared fermented sausage	
samples	24
3.2.7.4.1. Cooking yield and cooking loss	24
3.2.7.4.2. pH value measurement.	24
3.2.7.4.3. Water holding capacity (WHC) and plasticity	25
3.2.7.5. Microbiological analysis	25
3.2.7.5.1. Sample preparation.	25
3.2.7.5.2.Total viable bacterial count (TVBC)	25

3.2.7.5.3. Yeasts and Molds count	26
3.2.7.5.4. Colony count of Coliform	26
3.2.7.5.5. Colony count of <i>E. coli</i>	26
3.2.7.5.6. Horizontal method for the detection of Salmonella	
spp	27
3.2.7.5.6.1. Pre-enrichment	27
3.2.7.5.6.2. Selective Enrichment	27
3.2.7.5.6.3. Plating out and identification	27
3.2.7.5.7. Horizontal method for the enumeration of	
coagulase positive Staphylococcus aureus	27
3.2.7.5.8. Total viable spore forming bacterial count	28
3.2.8. Sensory evaluation	28
3.2.9. Statistical analysis.	28
4. RESULTS and DISCUSSION	30
4.1. Antimicrobial activity of prepared clove and thyme ethanolic	
extracts	30
4.1.1. Preliminary screening of antimicrobial activity	30
4.1.2. Antifungal activity of clove and thyme ethanolic extracts.	35
4.2. Preparation of fermented beef sausage samples	37
4.2.1. Chemical composition of fermented beef sausage	37
4.2.1.1. Moisture content	37
4.2.1.2. Protein content	41
4.2.1.3. Fat content	41
4.2.1.4. Ash content	44
4.2.1.5. Carbohydrate content.	44
4.2.2. Physicochemical measurements	47
4.2.2.1. The pH values	47
4.2.2.2. Water holding capacity (WHC)	47
4.2.3. Thiobarbiturtic acid reactive substances (TBARs) values.	49
4.2.4. Total volatile nitrogen (TVN) values	51
4.2.5. Cooking measurements.	53
4.2.5.1. Cooking yield	53

4.2.5.2. Cooking loses.	53
4.2.6. Microbiological quality of fermented beef sausage	56
4.2.6.1. Total viable bacterial count (TVBC)	56
4.2.6.2. Total lactic acid bacterial count	57
4.2.7. Sensory evaluation of fermented beef sausage samples	58
4.2.7.1. Color	58
4.2.7.2. Odor	60
4.2.7.3. Tenderness.	60
4.2.7.4. Juiciness	63
4.2.7.5. Overall acceptability	63
5. SUMMARY AND CONCLUSION	66
6. REFERENCES	73
7. ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Ingredients used in manufacturing fermented beef	
	sausage	24
2	Evaluation sheet used in sensory testing of	
	prepared fermented sausage	31
3	Antimicrobial activity of clove ethanolic extract	
	against bacterial and yeast strains	33
4	Antimicrobial activity of thyme ethanolic extract	
	against bacterial and yeast strains	34
5	Antifungal activity of clove ethanolic extract	
	against fungal strains	38
6	Antifungal activity of thyme ethanolic extract	
	against fungal strains	38
7	Moisture content (%) of various fermented beef	
	sausage sample as affected by different treatments	
	and storage period for 15 day at (4±1 °C)	40
8	Protein content (%) of various fermented beef	
	sausage samples as affected by different	
	treatments and storage period for 15 days	
	(4±1°C)	42
9	Fat content (%) of various fermented beef	
	sausage samples as affected by different	
	treatments and storage period for 15 days	
	(4±1°C)	43
10	Ash content (%) of various fermented beef	
	sausage samples as affected by different	
	treatments and storage period for 15 days	
	(4±1°C)	45
11	Carbohydrate content (%) of various fermented	
	beef sausage samples as affected by different	46