Vitronectin (VTN): A Novel Diagnostic And Prognostic Marker for Hepatocellular Carcinoma (HCC) On Top Of Chronic Hepatitis C Virus Related Diseases

A Thesis

Submitted for partial fulfillment of Master degree in Internal Medicine

By

Hamed Saad Badawy Saad

M.B.B.Ch, Faculty of Medicine, Mansoura University Resident of Internal Medicine at Mahalla Hepatology Teaching Hospital

Under Supervision of

Prof. Dr. Amal Shawky Mohamed Bakir

Professor of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Hesham Hamdy Al-Kilany

Assistant Professor of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Ramy Samir Ghait

Lecturer of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

First and foremost, I feel always indebted to Allah, the **Most Beneficent** and **Merciful** who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Amal Shawky Mohamed Bakir**, Professor of Internal Medicine,
Hepatology and Gastroenterology, Faculty of Medicine, Ain Shams
University, for her valuable guidance and expert supervision, in
addition to her great deal of support and encouragement. I really
have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Hesham Hamdy Al-Kilany**, Assistant Professor of Internal Medicine, Hepatology And Gastroenterology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Ramy Samir Ghait**, Lecturer of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of his time. I greatly appreciate his efforts.

Special thanks to my **Parents**, my **Wife and Kids** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Mamed Saad Badawy Saad

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	vi
List of Figures	viii
Introduction	1
Aim of the Work	4
Review of Literature	
Hepatitis C virus	5
Liver Cirrhosis	34
Vitronectin	55
Hepatocellular carcinoma	72
Patients and Methods	97
Results	103
Discussion	123
Summary	134
Conclusions	139
References	142
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

18F-FDG : 18F-fluorodeoxyglucose

AAR : Aspartate Aminotransferase (AST)/Alanine

Aminotransferase (ALT) ratio

AASLD : American Association for the Study of Liver

Disease

AFP : Alpha-Fetoprotein

AFU : α -1-fucosidase

ALP : Alkaline phosphatase

ALT : Alanine aminotransferase

APHE : Arterial phase hyperenhancement

AST : Aspartate aminotransferase

AUC : Area under the curve.

BCLC : Barcelona Clinic Liver Cancer staging system

CBC : Complete blood count

CC : Cholangiocarcinoma

CLIP : Cancer of the liver Italian program

CT : Computerized Tomography

CUPI : Chinese University Prognostic Index

DAAs : Direct-acting antiviral agents

DAC : Daclatasvir

DCP: Des-gamma-carboxy prothrombin

DNA : Deoxyribonucleic acid

DWI : Diffusion-weighted imaging

EASL: European Association for the Study of the Liver diseases

ECOG : Eastern Cooperative Oncology Group

EGF : Epithelial growth factor

ELISA : enzyme-linked immunosorbent assays

FDA : Food and Drug Administration

Genotype : GT

GP-73 : Golgi protein-73

GPC-3 : Glypican-3

HB: Hemoglobin

HBs-Ag : Hepatitis B virus surface Antigen

HBV: Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

HIV : Human Immunodeficiency Virus

HKLC : Hong-Kong Liver Cancer

HRS : Hepatorenal syndrome

IFN-free: Interferon -free

IgG: Immunoglobulin G

INR : International Normalized RatioIU per ml : International Units Per Millilitre

JIS : Japan Integrated Staging

KW : Kruskal Wallis test

LED : Ledipasvir

LT : Liver transplantation

MELD : Model for End-Stage Liver Disease

miRNAs : MicroRNAs

MRI : Magnetic Resonance Imaging

MWA : Microwave ablation

NAFLD : Non-alcoholic fatty liver disease

NCCVH : National Committee for Control of Viral Hepatitis

NK : Natural killer cells

NPV : Negative predictive value.

χ2 : Chi-Square test

NS3/4A PIs: Nonstructural 3/4A Protease Inhibitors

NS5A : Nonstructural 5A Polymerase Inhibitors

NS5B NNPIs: Nonstructural 5B NON nucleoside Polymerase Inhibitors

NS5B NPIs: Nonstructural 5B nucleoside Polymerase Inhibitors

NSAIDs : Non-steroidal anti-inflammatory drugs

OMB : Ombitasvir

ORF : Open reading frame

PAI-1 : Plasminogen activator inhibitor-1

PAR : Paritaprevir

PBC: Primary Biliary Cholangitis

PCR: Polymerase Chain Reaction

PD-1 : Programmed cell death protein-1

PDFGR α : Platelet-derived growth factor receptor α

PEG-IFN: Pegylated interferon

PEI : Percutaneous ethanol injection

PET : Positron emission tomography

PIVKA : Prothrombin induced by vitamin K absence

PLT: Platelets

PPV : Positive predictive value

PSC: Primary Sclerosing CholangitiS

PVT : Portal vein thrombosis

RASs : Resistance-associated substitutions

RBV: Ribavirin

RdRp : RNA-dependent RNA polymerase

RFA : Radiofrequency ablation

RNA : Ribonucleic acid

ROC : Receiver Operator Characteristic

SBP : Spontaneous bacterial peritonitis

SCCA : Squamous cell carcinoma antigen

SIM : Simeprevir

SIRT : Selective internal radiation therapy

SOF : Sofosbuvir

SPSS : Statistical Package for Social Sciences

SVR : Sustained Virological Response

TACE : Transarterial chemoembolization

TERC: Telomerase RNA component

TERT : Telomerase reverse transcriptase

TGF-b1 : Transforming Growth Factor b1

TIPS : Transjugular intrahepatic portosystemic shunt

TKI : Tyrosine-kinase inhibitor

TTV : Total tumor volume

UCSF : University of California, San Francisco

UK : United Kingdom

US : The United States

US : Ultrasound

UTRs : Untranslated regions

VEGF : Vascular endothelial growth factor

VEGFR : Vascular endothelial growth factor receptor

VTN or VN: Vitronectin

WBCs: White Blood Corpuscles

WHO: World Health Organization

Y90 : Yttrium 90

List of Tables

Table No	. Title Page N	0.
Table (1):	Classification of new antiviral drugs	23
Table (2):	Recommended regimens and durations (weeks) for patients without cirrhosis who have never been treated, according to HCV genotype	30
Table (3):	Recommended regimens and durations (weeks) for patients with compensated cirrhosis who have never been treated, according to HCV genotype	31
Table (4):	Summary of product and dosing information for the direct-acting antivirals approved by the US Food and Drug Administration and European Medicines Agency	32
Table (5):	Child Pugh Score	52
Table (6):	Geographical distribution of main risk factors for primary liver cancer world-wide	73
Table (7):	Comparison of the demographic data within the study groups	03
Table (8):	Comparison of the comorbidities and smoking within the study groups 1	05
Table (9):	Comparison of the laboratory investigations within the study groups 1	06
Table (10):	Comparison of the levels of AFP and vitronectin before treatment in the four study groups	10

Table (11):	Comparison of the demographic data within the study groups
Table (12):	Comparison of the levels of HCV PCR 113
Table (13):	Comparison of the Child PUGH score in the cases in cirrhosis and HCC groups 114
Table (14):	Tumour criteria according to BCLC, tumour size and number of lesions
Table (15):	Serum level of AFP and vitronectin level in group IV before and after treatment 118
Table (16):	Prediction of ability of Vitronectin to differentiate between normal & HCV +ve cases
Table (17):	Prediction of ability of Vitronectin to differentiate between HCV +ve cases & cirrhosis
Table (18):	Prediction of ability of Vitronectin to differentiate between cirrhosis & HCC 121
Table (19):	Analysis of the interventional methods in cases with HCC

List of Figures

Figure No.	Title	Page No.
Figure (1):	Global distribution of HCV geno	types 7
Figure (2):	HCV prevalence	8
Figure (3):	Timeline of hepatitis C prevalence in Egypt among adult	
Figure (4):	HCV life cycle	11
Figure (5):	Hepatitis C virus (HCV) genon potential drug discovery targets	
Figure (6):	Journey of chronic hepatitis C (HCV) patients through the Eg HCV model of care.	gyptian
Figure (7):	Causes of liver Cirrhosis	36
Figure (8):	Evolution of liver resolution	37
Figure (9):	Clinical spectrum of cirrhosis	42
Figure (10):	The new theory on the developm complications and organ failur patients with cirrhosis (adapted Ref. 5)	re/s in I from
Figure (11):	The sites of portosy communication	
Figure (12):	A, illustration of Gastro-oesp varices arise from the left gastri (coronary vein) and drain in azygous vein. B, fluoroscopic image demonstrating the appearance these varices	to the spot ance of

Figure (13):	(A) Grade I oesophageal varices48
Figure (14):	Upper panel: localization of the binding domains of vitronectin towards various ligands
Figure (15):	Schematic presentation of possible regulatory assignments of vitronectin 60
Figure (16):	Major biological functions in which vitronectin has been implicated
Figure (17):	Vitronectin expression is increased in HCC
Figure (18):	Vitronectin expression is increased in CHM71
Figure (19):	Mechanism of hepatic encephalopathy77
Figure (20):	Diagnostic algorithm for the study of a nodule detected in the screening program
Figure (21):	Modified BCLC staging system and treatment strategy
Figure (22):	Multidetector CT device
Figure (23):	Distribution of age among the study groups
Figure (24):	Distribution of gender among the study groups
Figure (25):	Comparison of the comorbidities and smoking within the study groups
Figure (26):	Mean of Hemoglobin in different study groups107

Figure (27):	Median of Platelets in different study groups
Figure (28):	Median of white blood cells in different study groups 107
Figure (29):	Median of Creatinine in different study groups
Figure (30):	Mean of INR in different study groups 108
Figure (31):	Mean of Albumin in different study groups
Figure (32):	Median of Total bilirubin and Direct bilirubin in different study groups 109
Figure (33):	Median of ALT and AST in different study groups
Figure (34):	Median of AFP in different study groups before treatment
Figure (35):	Median of Vitronectin in different study groups before treatment
Figure (36):	Comparison of the Child Pugh score in the cases in cirrhosis and HCC groups 114
Figure (37):	Tumour criteria according to BCLC 116
Figure (38):	Tumour criteria according to number of lesions
Figure (39):	Tumour criteria according to tumour size
Figure (40):	Prediction of ability of Vitronectin to differentiate between normal & HCV +ve cases by ROC curve

Figure (41):	Prediction of ability of Vitronectin to differentiate between HCV +ve cases & cirrhosis by ROC curve	. 120
Figure (42):	Prediction of ability of Vitronectin to differentiate between cirrhosis & HCC by ROC curve	. 121
Figure (43):	Analysis of the interventional methods in cases with HCC	. 122