Impact of SVR to direct antivirals on liver stiffness in patients with chronic hepatitis C using Mac2 binding protein and PAPAS index compared to Fibro Scan

Thesis

Submitted for partial fulfillment of MD degree in Internal Medicine

By

Marwan Mohammed Alhusseini Mohammed

MSc, Internal Medicine Ain Shams University

Under Supervision of

Prof. Dr./ Khaled Mohamed Hussein Abdelwahab

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Prof. Dr./ Amir Helmy Samy

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Assist Prof./ Shereen Abou Bakr Saleh

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr./ Mohamed Magdy Mohamed Salama

Lecturer of Internal Medicine Faculty of Medicine – Ain Shams University

Dr./ Ghada Abdelrahman Ahmed

Lecturer of Internal Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

2020

Acknowledgement Acknowledgement Acknowledgement Acknowledgement

First of all, all gratitude is due to Allah Almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Khaled Mohamed Hussein Abdelwahab**, Professor of Internal Medicine, Faculty of Medicine – Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr./Amir Helmy Samy**, Professor of Internal Medicine, Faculty of Medicine – Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of Assist Prof./ Shereen Abou Bakr Saleh, Assistant Professor of Internal Medicine, Faculty of Medicine – Ain Shams University, for her invaluable efforts, tireless guidance and for her patience and support to get this work into light.

My great thanks to **Dr./ Mohamed Magdy Mohamed Salama**, Lecturer of Internal Medicine, Faculty of Medicine – Ain Shams University, for his supervision, review of the work, and his kind advises.

Last but not least, I can't forget **Dr./Ghada Abdelrahman Ahmed,** Lecturer of Internal Medicine, Faculty of Medicine – Ain Shams University, for the efforts and time she has devoted to accomplish this work.

Words fail to express my love, respect and appreciation to my Parents and my Wife for their unlimited help, support and pushing me forward in every step of my life.

Marwan Mohammed Alhusseini Mohammed

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	vi
List of Figures	ix
Introduction	1
Aim of the Work	4
Review of Literature	
Liver fibrosis and HCV	5
Non Invasive Diagnosis of liver Fibrosis	37
Mac-2 Binding Protein Glycosylation isomer (M2BPGi) as a fibrosis marker	
Patients and methods	88
Results	98
Discussion	131
Summary	145
Conclusion	149
Recommendations	150
References	151
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

2D-SWE : Real-time 2D shear wave elastography

AAR : Aspartate aminotransferase and alanine

aminotransferase ratio (AAR)

ACE : Angiotensin-converting enzyme

ACEI : Angiotensin converting enzyme inhibitors

ADC : Apparent diffusion coefficient

AFP : Alpha-feto protein

AGP : α1-acid glycoprotein

AIDS : Acquired immune deficiency syndrome

AIH : Autoimmune hepatitis

ALD : Alcoholic liver disease

ALT : Alanine aminotransferase

APRI : Aspartate aminotransferase-to-platelet ratio index

ARBs : Angiotensin receptor blockers

ARFI : Acoustic radiation force impulse

ASK1 : Apoptosis signal-regulating kinase 1

AST : Aspartate aminotransferase

AUC : Area under curve

AUROC : Area under the receiving operating characteristics

BMI : Body mass index

CB antagonist: Cannabinoid antagonists

CDCA : Chenodeoxycholic acid

CHC : Chronic hepatitis C infection

COI : Cut off index

CT : Computed tomography

CTGF : Connective tissue growth factor

CTL : Cytotoxic T lymphocytes

CVC : Cenicriviroc

DAAs : Direct acting antiviral agents

DAC : Dacltasvir

DAMPs: Damage-associated molecular patterns

DCE : Dynamic contrast enhanced

DCs : Dendritic cells

DTR : Diphtheria toxin receptor

DWI : Diffusion weighted imaging

EASL: European Association for the Study of the Liver

ECM : Extracellular matrix

EGF : Epidermal growth factor

EGFR : Epidermal growth factor receptor

ELF : European Liver Fibrosis

EMT : Epithelial-to-mesenchymal transition

EndoMT: Endothelial-to-mesenchymal transition

EOT : End of treatment

F/U: Follow-up

FIB-4 : Fibrosis-4 score

FXR : Farnesoid X receptor

GGT : γ glutamyl transferase

GR-MD-02: Galactoarabino-rhamnogalaturonan

GT1 : Genotype 1

HA : Hyaluronic acid

HBV: Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

HIV : Human immunodeficiency virus

HO-1 : Heme oxygenase 1

HSCs: Hepatic stellate cells

HSP47 : Heat shock protein 47

HVPG: Hepatic venous pressure gradient

IQR : Inter quartile range

kPa : Kilopascals

KTA-HCM: Knowledge and technology association for

hepatitis C management

LIF : Liver inflammation and fibrosis

LS: Liver stiffness

LSMs: Liver stiffness measurements

M2BPGi: Mac-2 Binding Protein Glycosylation isomer

MAPK : Mitogen-activated protein kinase

MBT : Methacetin breath test

MFAP-4 : Microfibril-associated glycoprotein 4

MFBs : Myofibroblasts

MMP : Matrix metalloproteinase

MMP-2 : Metalloproteinase 2

MMT : Mesothelial-to-mesenchymal transition

MRE : Magnetic resonance elastography

MRI : Magnetic resonance imaging

MRS : Magnetic resonance spectroscopy

NAC : N-acetylcysteine

NADPH : Nicotinamide adenine dinucleotide phosphate

NAFLD: Non-alcoholic fatty liver disease

NASH : Nonalcoholic steatohepatitis

OELF: Original European Liver Fibrosis

PAMPs: Pathogen-associated molecular patterns

PAPAS INDEX: (Platelet/Age/Phosphatase/AFP/AST) index

PBC: Primary biliary cirrhosis.

PDGF : Platelet-derived growth factor

PICP: Procollagen type I carboxy terminal peptide

PIIINP: Procollagen type III amino-terminal peptide

PON-1: Paraoxonase 1

PPAR- γ : Peroxisome proliferator-activated receptor γ

PSC: Primary sclerosing cholangitis

pSWE: Point shear wave elastography

RANTS : Regulated upon activation normal T cell

expressed and presumably secreted

RBV: Ribavirin

ROS : Reactive oxygen species

RTC : Randomized control trial

RTE : Real-Time Elastography

siRNA : Small interfering RNA

SOF : Sofosbuvir

SVR : Sustained virologic response

TE : Transient elastography

TGFβ1 : Transforming growth factor β1

TGR5 : G-protein-coupled membrane receptor 5

TIMPs: Tissue inhibitors of matrix metalloproteinases

TLR2 : Toll-like receptor 2

TNF : Tumor necrosis factorUDCA : Ursodeoxycholic acid

ULN: Upper limit of normal

VEGF : Vascular endothelial growth factor

VTTQ : Virtual TouchTM Tissue Quantification

WFA+M2BP: Wisteria floribunda agglutinin-positive human

Mac-2-binding protein

WHO: World Health Organization

α-SMA : α-smooth muscle actin

List of Tables

Table No	. Title	Page No.
Table (1):	Genetic and non-genetic factors ass with fibrosis progression in different of chronic liver diseases	nt types
Table (2):	Major studies investigating the efficient treatment for biopsy-proven liver in relation to hepatitis virus infection	fibrosis
Table (3):	Major studies investigating the efficient treatment for biopsy-proven liver in non-viral chronic liver diseases	fibrosis
Table (4):	Summary of the ongoing clinical tria fibrosis reversal endpoints	
Table (5):	Pros and cons of methods for liver be	iopsy 39
Table (6):	Indirect serum markers of liver fibro	sis 61
Table (7):	The prognostic value of Mac-2l patients with liver cirrhosis hepatocellular carcinoma	and
Table (8):	Differences in Mac-2 bp COI between stages of fibrosis among p with liver disease	patients
Table (9):	Castera liver stiffness cut off value transient elastography in chronic h	epatitis
Table (10):	Demographic characteristics amosstudied cases	_

Table (11):	Gender distribution and basal clinical characteristics among the studied cases (N=80)
Table (12):	HCV characteristics and treatment regimen among the studied cases (N=80)99
Table (13):	Liver ultrasound (U/S) imaging among the studied cases (N=80)
Table (14):	Laboratory findings among the studied cases (1/2)
Table (15):	Laboratory findings among the studied cases (2/2)
Table (16): 1	Non-invasive parameters among the studied cases
Table (17):	Fibroscan stages among the studied cases 112
Table (18):	Non-invasive parameters among the different fibrosis stages at baseline and after achieving SVR
Table (19):	Correlations of MAC-2bp score with other parameters at baseline and after achieving SVR
Table (20):	Correlations of MAC-2bp score with other non-invasive parameters at baseline and after achieving SVR
Table (21):	Correlations between noninvasive parameters with each other at baseline 120
Table (22):	Correlations between noninvasive parameters with each other at SVR 12 120

Table (23):	Diagnostic performance of non-invasive parameters in differentiating stages F4 (cirrhotic) from F0-3 (non-cirrhotic) (F4) 121
Table (24):	Diagnostic performance of non-invasive parameters in differentiating stages F3 from F0-2 (F≥3)
Table (25):	Diagnostic performance of non-invasive parameters in differentiating stages F2 from F0-1 (F≥2)
Table (26):	Diagnostic performance of non-invasive parameters in differentiating stages F3-4 (advanced fibrosis) from F0-2 (non-advanced fibrosis)
Table (27):	Diagnostic performance of non-invasive parameters in differentiating stages F2-4 (significant fibrosis) from F0-1 (non-significant fibrosis)

List of Figures

Figure No	. Title	Page No.
Figure (1):	Pathogenesis of liver fibrosis	9
Figure (2):	Mechanisms of HCV-associated fibrosis	
Figure (3):	Liver fibrosis progression and resol	ution 25
Figure (4):	Mechanisms by which antife therapies may lead to fibrosis regres	
Figure (5):	The fibroscan and it M-probe	65
Figure (6):	2D SWE – US image of the liver w SWE.	
Figure (7):	Assessment of liver fibrosis with (magnetic resonance elastograph three patients with chronic liver dise	y) in
Figure (8):	Magnetic resonance elastograph performed in a standard scanner	•
Figure (9):	The role of MAC-2BP in the program of liver fibrosis	
Figure (10):	Treatment regimen among studied (N=80)	
Figure (11):	Liver U/S imaging among the scases.	
Figure (12):	Hemoglobin among the studied cas	es 103
Figure (13):	WBC among the studied cases	103
Figure (14):	Platelets among the studied cases	104
Figure (15):	ALT among the studied cases	104

Figure (16):	AST among the studied cases105
Figure (17):	ALKP among the studied cases105
Figure (18):	Albumin among the studied cases 106
Figure (19):	Total bilirubin among the studied cases 106
Figure (20):	Creatinine among the studied cases 107
Figure (21):	PC among the studied cases 107
Figure (22):	INR among the studied cases 108
Figure (23):	AFP among the studied cases
Figure (24):	Liver stiffness measurement (Kpa) among the studied cases
Figure (25):	PAPAS score among the studied cases 110
Figure (26):	MAC-2bp score among the studied cases 111
Figure (27):	Fibroscan stages among the studied cases 113
Figure (28):	PAPAS score among the fibrosis stages 115
Figure (29):	Mac-2bp score among the fibrosis stages 115
Figure (30):	Correlations between MAC-2bp score and liver stiffness measurement (LSM) at baseline
Figure (31):	Correlations between MAC-2bp score and liver stiffness measurement (LSM) after achieving SVR12
Figure (32):	Correlations between MAC-2bp score and liver stiffness measurement (LSM) changes after achieving SVR12119
Figure (33):	Diagnostic performance of different non- invasive parameters in differentiating stages F4 from F0-3 at baseline

Figure (34):	Diagnostic performance of different non- invasive parameters in differentiating stages F4 from F0-3 after SVR12 122
Figure (35):	Diagnostic performance of different non- invasive parameters in differentiating stages F3 from F0-2 at baseline
Figure (36):	Diagnostic performance of different non- invasive parameters in differentiating stages F3 from F0-2 after SVR12
Figure (37):	Diagnostic performance of non-invasive parameters in differentiating stages F2 from F0-1 at baseline
Figure (38):	Diagnostic performance of non-invasive parameters in differentiating stages F2 from F0-1 after SVR12
Figure (39):	Diagnostic performance of non-invasive parameters in differentiating stages F3-4 from F0-2 at baseline
Figure (40):	Diagnostic performance of non-invasive parameters in differentiating stages F3-4 from F0-2 after SVR12
Figure (41):	Diagnostic performance of non-invasive parameters in differentiating stages F2-4 from F0-1 at baseline
Figure (42):	Diagnostic performance of non-invasive parameters in differentiating stages F2-4 from F0-1 after SVR12

ABSTRACT

Background: New direct-acting antivirals (DAA) has dramatically increased the cure rate in patients with chronic hepatitis C and result in improvement in liver stiffness measured by transient elastography (TE) in patients with sustained virologic response (SVR). Multiple non-invasive methods have been used successfully in the of liver fibrosis. Mac-2 Binding Protein Glycosylation isomer (M2BPGi) is a novel serological glyco-biomarker for staging liver fibrosis. Aim of the work: We aimed to evaluate the impact of sustained virologic response (SVR) to direct antivirals on liver stiffness using the serum level of Mac-2 binding protein in patients with compensated chronic HCV who received direct acting antivirals (DAAs) according to National Committee for Combating Viral Hepatitis before (baseline) and after (sustained virologic response week 12) treatment, and to assess how this biomarker was correlated with another standard non-invasive methods of fibrosis assessment, FIB-4, PAPAS index and Fibro scan. Patients and Methods: Our cohort study consisted of 80 Egyptian patients with compensated chronic HCV who received direct acting antivirals (DAAs) (65 patients received sofosbuvir/ daclatasvir and 15 patients received sofosbuvir/ daclatasvir/ ribavirin) according to National Committee for Combating Viral Hepatitis. All patients were subjected to clinical evaluation, laboratory investigations, abdominal ultrasonography, transient elastography (Fibroscan) in addition to non-invasive indices (Mac-2bp, PAPAS index, and FIB-4). Fibroscan, Mac-2bp, FIB-4 and PAPAS index were measured in all patients at base line before treatment and 12 weeks after end of treatment (EOT) and achievement of SVR. Results: The current study showed that the mean value of LSM, FIB-4, PAPAS index and Mac-2bp at baseline were 11.4±9.5, 1.8±1.3, 2.2±0.5, and 9.0±8.8 and after achieving SVR 9.5±6.3, 1.3±0.7, 2.1±0.3 and 6.7±7.3 respectively with significant improvement in all parameters (P=0.002, <0.001, 0.010 and <0.001 respectivily). ALT, AST and ALP significantly decreased after achieving SVR 12 while Albumin and Platelets significantly increased after achieving SVR 12. Mac-2 bp levels increased with the progression of liver fibrosis. The areas under the curve (AUROC) of Mac-2bp at baseline in $F \ge 2$, $F \ge 3$ and $F \le 4$ were 0.710, 0.569, and 0.801 respectively and after achieving SVR were 0.583, 0.893, and 0.844 respectively. (AUROC) of Mac-2bp for differentiating advanced fibrosis (F3-4) from non-advanced fibrosis (F0-2) at baseline and after achieving SVR were 0.730 and 0.891 respectively. Mac-2bp after achieving SVR12 had more favorable diagnostic accuracy for distinguishing advanced liver fibrosis (F3-4) from non-advanced fibrosis (F0-2) with an AUC 0.891.

Conclusion: Mac-2 binding protein (Mac-2bp) is a simple and reliable noninvasive marker for liver fibrosis assessment in patients with chronic hepatitis C. Liver stiffness measurements (LSM) evaluated using transient elastography (TE) significantly decreased overall in patients with chronic HCV infection who received direct-acting antivirals (DAAs) therapy and achieved sustained virologic response 12 weeks after end of treatment (SVR12).

Keywords: SVR, Mac-2bp, DAAs, LSM