

Ain Shams University Faculty of Specific Education Home Economic Department

Effect of fermented mixture of soymilk and whey protein with some probiotics strains on the diabetic rats

THESIS

Submitted to faculty of specific education, Ain- shams Univ. in Partial fulfillment of the requirement for doctor degree in nutrition and food science

By Nada Mohammed Afifi Afifi

Supervised By

Prof. Dr. Usama El-Sayed Mostafa

Professor of Nutrition and Food Science, Dean of Faculty of Specific Education Faculty of Specific Education Ain Shams University

Prof. Dr. Yasser Mahmoud Ibrahim Alawi

Professor of Food Science and Nutrition Faculty of Specific Education Ain Shams University

Dr Ereny Wilson nagib

Assistant Professor of Food Science and Nutrition, Faculty of Specific Education Ain Shams University

Abstract

The Effect of different milk types and its yoghurt by various types of bacterial Culture on rats induced to diabetes.

Diabetes is a global health problem in the world. Probiotic therapies are going to be an effective alternative therapeutic strategy in the treatment and management of diabetes. The objective of this study was to evaluate the effect of different milk types, conventional voghurt and probiotic voghurt from Bifidobacterium on serum blood glucose and lipid profile for rats induced to diabetes. In this study, two strains of conventional vogurt, by Lactobacillus bulgaricus and Streptococcus salivarius and combination with either probiotics bacteria Bifidobacterium infantis and Bifidobacterium longum for the production of fermented soymilk and cow milk for feeding 96 male albino rats induced with STZ. Results revealed that fermented soymilk by Bifidobacterium was significantly decrease glucose levels, total cholesterol concentrations and triacylglycerols compared to conventional vogurt types and milk types. In conclusion soy-protein consumption reduces serum blood glucose and lipid profile for rats induced to diabetes.

Key Words: Soymilk, Cow milk, Whey protein, yogurt, serum blood glucose, lipid profile.

Acknowledgement

First and above all, my deepest gratitude and thanks to all Allah for achieving any work in my life.

I wish to express my great appreciation to **Prof. Dr. Usama El-Sayed Mostafa**, Professor of Nutrition and Food Science, Dean for Faculty of Specific Education, Faculty of Specific Education, Ain Shams University. For this investigation suggestion, direct supervision, greatest faithful, constructive criticism as well as valuable discussion, great help for all work and plentiful active for me to bring this investigation to its best shape.

Greatful thanks to **Prof. Dr. Yasser Mahmoud Ibrahim Alawi,** Professor of Food Science and Nutrition, Faculty of Specific Education, Ain Shams University for careful guidance, willing cooperation and encouragement throughout the work.

My thanks to **Assistant Prof. Dr. Ereny Wilson Nagib,** Assistant Professor of Nutrition and Food Science of Nutrition and Food Science (Special Education), Faculty of specific Education, Ain Shams University for her helps throughout the work.

I would like to express my deepest gratitude and respect to **Prof. Dr. Magdy Attia Mohamed**, Professor of microbiology, Agricultural Microbiology Department, National Research Centre Who devoted his time, effort, scientific advice, endless help and experience to achieve this work.

Many thanks are also extended to **Prof. Dr. Hanan Mohammed Kamal,** Professor of Food Science and
Nutrition, Faculty of Specific Education, Ain Shams
University for her objective discussion.

My special thanks to **Hoda abd Elrazek Kabary**, Researcher assistant microbiology, Agricultural Microbiology Department, National Research Centre for her help during practical work and sincere cooperation with me.

Finally I would like to express my deepest thanks and gratitude to my family for their continuous encouragement and support during this work.

LIST OF CONTENTS

	Page
1. Introduction	1
2. Aim of the Work	4
3. Review of Literature	5
3.1 Soy milk.	5
3.1.1 Chemical composition of Soy milk.	6
3.1.2 Soy milk and Fermentations.	9
3.1.2.1 Conventional yoghurt.	9
3.1.2.2 Probiotic soy-yoghurt.	12
3.1.3 The health potential role of products	16
containing Bifidobacterium.	
3.1.3.1 Diabetic lowering effect.	16
3.1.3.2 Cholesterol-lowering effect.	21
3.2 Whey proteins.	25
3.2.1 Chemical composition of whey proteins.	
3.2.2 The anti-diabetic potential of whey proteins.	
4. Materials and Methods	32
4.1 .Materials	32
4.1.1 Soybeans	32
4.1.2 Milk.	32
4.1.3 whey protein	32
4.1.4 Cultures	
4.1.4.1 Yoghurt culture.	33
4.1.4.2 Soy- probiotic yoghurt culture.	33

4. 2 Methods	33
4.2.1 Preparation of traditional yoghurt from milk and	33
soymilk.	
4.2.2 Preparation of probiotic yoghurt from milk and	34
soymilk.	
4.2.3 Microbiological analysis	34
4.2.3.1. Bifidobacterial count.	34
4.2.3.1. Yoghourt culture count.	35
4.2.4 Analytics methods:	
4.2.4.1 Chemical analysis.	35
4.2.4.2 Animal feeding experiments.	36
4.2.4.3 Basal Diet.	36
	36
4.2.4.4 Biochemical analysis.	40
4.2.4.5 Histopathological examination	43
4.3. Statistical analyses	43
5. Results and Discussion	45
5.1 Chemical composition percentage of different milk.	45
5.2 The effect of pH value of different milk types,	50
conventional yoghurt and probiotic yoghurt.	
5.3 Total bacterial counts of different conventional	54
yoghurt and probiotic yoghurt at refrigerator temperature	
for different storage periods.	
5.4 . Total viable bacterial counts of yoghurt culture in the	57
different types of yoghurt at refrigerator temperature for	
different storage periods.	
5.5 Total viable bacterial counts of <i>Bifidobacterium</i>	60
culture bacteria in the different types of yoghurt at	
refrigerator temperature for different storage periods.	

5.6 Total viable counts of Coliforms, E.coli, yeasts and	65	
molds in the different types of yoghurt at refrigerator		
temperature for different storage periods.		
5.7 The effect of different milk (cow, soya and sweet	70	
whey protein) and its yoghurt by various types of bacterial		
culture on Initial weight, Finial weight, and Feed intake,		
FER, and BWG % for rats induced to diabetes.		
5.8 The effect of different milk (cow, soya and sweet	74	
whey protein) and its yoghurt by various types of bacterial		
culture on internal organs weight for rats induced to		
diabetes.		
5.9 The Effect of different milk (cow, soya and sweet	78	
whey protein) and its yoghurt by various types of culture	••	
on blood serum blood glucose for rats induced to diabetes.		
5.10 The effect of different milk (cow, soya and sweet	81	
whey protein) and its yoghurt by various types of culture	01	
on blood serum lipid profile for rats induced to diabetes.		
5.11 The effect different milk (cow, soya and sweet whey	85	
protein) and its yoghurt by various types of culture on	00	
serum lipoprotein fraction for rats induced to diabetes		
5.12 The effect of different milk (cow, soya and sweet	88	
whey protein) and its yoghurt by various types of culture		
on antioxidant status for rats induced to diabetes		
5.13 The effect of different milk (cow, soya and sweet	94	
whey protein) and its yoghurt by various types of culture	34	
on kidney function of the diabetics rats.		
5.14 The effect of different milk (cow, soya and sweet	96	
whey protein) and its yoghurt by various types of culture		
on Liver function of the diabetic's rats.		

5.15 Sensory evaluation of different milk (cow, soya and	100	
sweet whey protein) and its yoghurt by various types of		
bacterial culture.		
5.16 Histopathological examination		
6. Conclusion.		
7. Recommendations.		
8. English Summary.		
9. References.		
10. Arabic Summary.		

List of Tables

Tables	Title	Pa
		ge
1	Composition of basal diet.	37
2	Composition of salt mineral mixture.	37
3	Composition of vitamin mixture.	38
4	Chemical composition percentage of different milk.	45
5	The effect of pH Value of different milk types, conventional yoghurt and probiotic yoghurt.	51
6	Total bacterial counts of different conventional yoghurt and probiotic yoghurt at refrigerator temperature for different storage periods.	55
7	Total viable bacterial counts of yoghurt culture in the different types of yoghurt at refrigerator temperature for different storage periods.	58
8	Total viable bacterial counts of <i>Bifidobacterium</i> culture bacteria in the different types of yoghurt at refrigerator temperature for different storage periods.	62
9	Total viable counts of <i>Coliforms</i> , <i>E.coli</i> , yeasts and molds in the different types of yoghurt at refrigerator temperature for different storage periods.	67

10	The effect of different milk (cow, soya and sweet whey protein) and its yoghurt by various types of bacterial culture on Initial weight, Finial weight, and Feed intake, FER, and BWG % for rats induced to diabetes.	70
11	The effect of different milk (cow, soya and sweet whey protein) and its yoghurt by various types of bacterial culture on internal organs weight for rats induced to diabetes.	74
12	The effect of different milk (cow, soya and sweet whey protein) and its yoghurt by various types of culture on blood serum blood glucose for rats induced to diabetes	78
13	The effect of different milk (cow, soya and sweet whey protein) and its yoghurt by various types of culture on blood serum lipid profile for rats induced to diabetes.	81
14	The effect of different milk (cow, soya and sweet whey protein) and its yoghurt by various types of culture on serum lipoprotein fraction for rats induced to diabetes	85
15	The effect of different milk (cow, soya and sweet whey protein) and its yoghurt by various types of culture on antioxidant status for rats induced to diabetes	88
16	The effect different milk (cow, soya and sweet whey protein) and its yoghurt by various types of culture on kidney function of the diabetics rats.	94

17	The effect Different milk (cow, soya and sweet whey protein) and its yoghurt by various types of culture on Liver function of the diabetic's rats.	96
18	Sensory evaluation of Different milk (cow, soya and sweet whey protein) and its yoghurt by various types of bacterial culture.	100

List of Figure

Figures	Title	Page
1	Total bacteria count of different conventional yoghurt and probiotic yoghurt at refrigerator temperature for different storage periods.	56
2	Total viable bacterial counts of yoghurt culture in the different types of yoghurt.	60
3	Total viable bacterial counts of <i>Bifidobacteria</i> culture bacteria in the different types of yoghurt at refrigerator temperature for different storage periods.	64
4:15	Histopathological examination of heart	101:104
16:27	Histopathological examination of kidneys.	106:108
28:39	Histopathological examination of liver	110:112
40:51	Histopathological changes of the pancreas	114:117

LIST OF ABBREVIATIONS

ALT	Alanine aminotransferase
AOAC	Association of Official Analytical
	Chemists
AST	Aspartate aminotransferase
B. animalis	Bifidobacterium animalis
B. bifidum	Bifidobacterium bifidum
B. breve	Bifidobacterium breve
B. infantis	Bifidobacterium infantis
B. longum	Bifidobacterium longum
BW	Body weight
BWG	Body weight gain
CAT	Catalase
CFU/g	Colony forming unit per gram
Concn	Concentration
CVD	Cardiovascular disease
D	Day
E.coli	Escherichia coli
EDTA	Ethylenediamine Tetraacetic acid
EOS	Egyptian Organization for
	Standardization and Quality
	Control
FAO	Food and Agriculture Organization
FER	Feed efficiency ratio
FSFM	Fermented soy milk and flaxseed
	milk
g	Gram
g/l	Gram per liter

g/mL	Gram per Milliliter
GLUT2	Glucose transporter 2
GSH-Px	Glutathione peroxidase
GT	Glutathione S-transferase
H&E	Hematoxylin and Eosin
HDL-c	High-density lipoprotein
	cholesterol
I.O.S	International Organization for
	Standardization
ICMSF	International Commission on
	Microbiological Specifications for
	Foods
IDF	International Dairy Federation
KW/BW	kidney weight/ body weight
L. acidophilus	Lactobacillus acidophilus
L. Bulgaricus	Lactobacillus Bulgaricus
L. Rhamnosus	Lactobacillus rhamnosus
LDL -c	Low - Density Lipoprotein
	Cholesterol
MDA	Malondialdehyde
Mg	Milligram
mg/dl	milligrams per deciliter
Ml	Milliliter
mmol/L	Millmoles per liter
NAFLD	Non-alcoholic fatty liver disease
ROS	Reactive oxygen species
S. salivariu	Streptococcus salivarius
S. thermophiles	Streptococcus thermophilus
SOD	Superoxide dismutase
SPSS	Statistical Package for the Social
	Sciences
STZ	Streptozotocin

T2DM	Type 2 diabetes mellitus
TBA	Thiobarbituric acid
TBC	Total bacterial counts
TC	Total cholesterol
TCA	Total Antioxidant capacity
TG	Triglycerides
TN	Total Nitrogen
TVCBC	Total viable count of <i>Bifidobacteria</i>
TVCYC	Total viable count of yoghurt
	culture
UNU	United Nations University
VLDL-c	Very Low Density Lipoprotein
	Cholesterol
w/v	Weight/Volume
WHO	World Health Organization
Y & M	Yeasts and molds
%	Percentage