Evaluation of Marginal Integrity of Laminate Veneers

constructed from Two Different Ceramic Materials (In-Vitro Study)

دقة حواف القشرة الخزفية المصنوعة من مادتين مختلفتين من السيراميك

(دراسة معملية)

Thesis Submitted To

The Faculty of dentistry, Cairo University

In Partial Fulfillment of the Requirements for Master's Degree

"Fixed Prosthodontics"

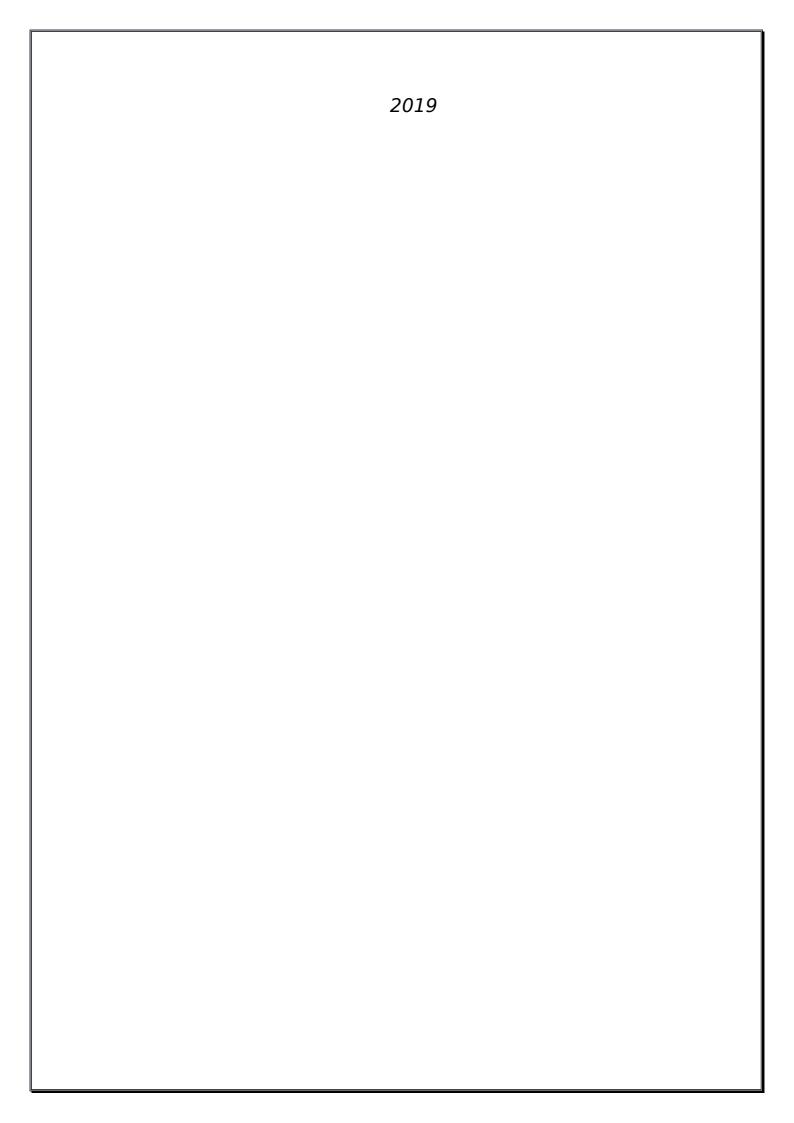
Presented by

Ibrahim Sameh Mohamed Rady

B.D.S, Faculty of dentistry, October 6 University (2013)

Supervisors

Dr. Lamiaa Khierallah


Professor of Fixed Prosthodontics ,Fixed Prosthodontics Department

Faculty of dentistry, Cairo University

Dr. Reham Saied El-Basty

Associate Professor of Fixed Prosthodontics ,Fixed Prosthodontics Department

Faculty of dentistry, Cairo University

بسم الله الرحمن الرحيم "وما أوتيتم من العلو الا قليلا"

صدق الله العظيم

Acknowledgments

First of all, I would like to thank Allah for instilling the curiosity in me to learn and know more diverse aspects of life

I take the opportunity to send my honest thanks to, **Dr Lamiaa khirallah**, Professor of Fixed prosthodontics, Faculty of Dentistry, Cairo University for her kind suggestions, counseling, cooperation and scientific supervision during this study.

I am grateful to **Dr. Reham EL-Basty** Associate professor of Fixed Prosthodontics, Faculty of Dentistry Cairo University, for her meticulous help, precious encouragement, guidance, valuable effort, great cooperation and useful remarks during my work.

Finally, I would like to thank all staff members of Fixed Prosthodontics Department and my colleagues who participate in making this work possible.

Dedication

To my **dear Father** and **dear Mother** for their prayers, encouragement and support.

To my **brothers**, for their support during the years for work and personal life as well.

List Of contents

CONTENTS

List of figures	I
List of tables	V
Introduction	1
Review of Literature3	
Statement of the problem15	
Aim of the study	
Hypothesis	17
PICO format	18
Materials and Methods	
Discussion	49
Summary& Conclusions57	
Recommendations 60 References	

	نص العربي	الملخ
60		

List of Figures

LIST OF FIGURES

Figure Numb er	Title	Page Numbe r
1	Ceramic Blocks Celtra Duo	21
-		21
2	Ceramic Blocks(E.maxCAD)	21
3	Ceramic Etch (Hydrofluoric acid)	22
4	Acid Etchant(N Etch)	22
5	Silane Coupling agent	23
6	Resin cement CHOICE 2	23
7	Digital caliper	24
8	centralizing device for holding the tooth in epoxy resin	26
9	tooth in epoxy resin	26
10	The computer numerically controlled CNC Milling machine	27
11	schematic diagram for veneer preparation	28

List of Figures

12	Finished tooth preparation with butt joint design	29
13	CEREC Omnicam	
14	Biogeneric copy	31
15	Prepared tooth scan	32
16	Drawing the margin	33
17	Insertion axis	33
18	designing parameters	34
19	CEREC MC XL milling machine	36
20	Milling in action	36
21	Programate P310 furnace	37
22	tooth after veneer cementation (labial view)	39
23	tooth after veneer cementation (proximal view)	39
24	thermocycling machine	40

List of Figures

25	Digital microscope with a built-in camera connected to computer	42
	••••	
26	Stabilizing the sample for measurement	42
27	Box plot showing marginal gap mean values for both groups at different measurement	45
	surfaceslabial surface of Celtra duo under digital	
28	microscope	46
	labial surface of e.max group under digital	
29	microscope	46
	Box plot comparing total marginal gap mean	
30	values between both material	48
	groups	

List of Tables

LIST OF TABLES

Table	Title
Page	
Numl	per
1 Mat	cerials used in this study type, composition &
manı	ıfacturer1
9,20	
2	Descriptive statistics of marginal gap results (Mean
value	s ± SDs) for both groups at different measurement surfaces
in µm	144
3	Comparison of total marginal gap results (Mean values
SDs)	between both groups in
μm	47

Introduction

When a definitive aesthetic treatment is determined, it is crucial to grant the patient's wish with the necessary dental treatment. Thus, conservative treatments that are the solution to aesthetic problems involving morphologic modifications and provide the result that the patient expects should always be the first therapeutic option¹.

Introduction of laminate veneers in 1970s marked the beginning of modern cosmetic dentistry by combining the principles of aesthetics and tooth conservation.

Innovative computer aided design/ computer-aided manufacturing (CAD/CAM) technologies have introduced a wide collection of ceramic materials ranging from relatively weak feldspathic ceramic and leucite glass ceramic to high strength lithium disilicate glass ceramic and zirconium oxide. Their efficiency had been proven in both in vitro and in vivo studies.

Additionally, new ceramic materials have been developed, such as zirconia-reinforced lithium silicate (ZLS) ceramics. ZLS ceramics contain 10% by weight of dispersed zirconia particles embedded in a fine-grained glass matrix of 500 to 800 nm¹⁹.

Celtra attains the same bending strength as lithium disilicate in less time.

Marginal integrity is a significant criterion in long-term clinical success of restorations, Marginal accuracy is linked to design and manufacturing considerations of ceramic veneers, marginal integrity is considered the "absolute vertical distance between a finish line of the prepared tooth and the margins of a fabricated veneer², Established dental literature supports clinically acceptable marginal integrity from 40 to 120 μm , with 120 μm considered the "maximum, tolerable marginal opening" for tooth preparations. 58 .

Unacceptable or inadequate marginal fits (typically wider than 120 μ m) can shorten the longevity of a restoration due to greater cement film exposure⁶, resulting in several complications; including discoloration, luting agent dissolution, decay, micro leakage and plaque accumulation⁵⁸.

No data are sufficient for ZLS ceramic CAD/CAM (Celtra duo) restorations. Therefore, it is the purpose of this Research is to compare the vertical marginal gap distance of Lithium disilicate glass ceramics (e-max CAD) with zirconia reinforced lithium silicate glass-ceramic (Celtra DUE) laminate veneer.