Impact of Neonatal Cardiovascular Compromise and its Treatment on Brain Electrical Activity and Short-term Clinical Outcome

Thesis

Submitted for Partial Fulfillment of MD Degree in Pediatrics

By

Hoda Abd EL Rahman Mohamed Ismail M.B, B.Ch (1989), M.Sc. (1993), Ph.D.(1997)

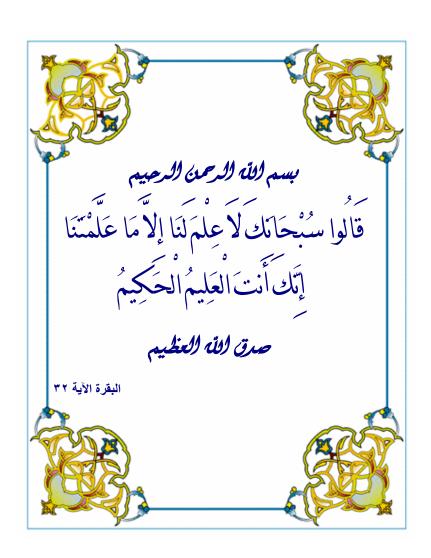
h (1989), M.Sc. (1993), Ph.D.(1997) Ain Shams University

Under Supervision of **Prof. Nehal Mohamed El Raggal**

Professor of Pediatrics-Ain Shams University

Prof. Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics-Ain Shams University


Dr. Noureldin Mohamed Abdelaal

Lecturer of Pediatrics-Ain Shams University

Dr. Eman Khairy Farahat

Assistant Prof. of Medical Biochemistry and Molecular Biology Ain Shams University

Faculty of Medicine - Ain Shams University
2019

First and foremost, I feel always indebted to AUAH, the Most Beneficent and Merciful.

I would like to express my deepest thanks and profound gratitude to **Prof. Or. Mehal Mohamed El**Raggal Professor of Pediatrics, Faculty of Medicine,
Ain Shams University. It was such a great honor to work under her kind guidance. Her continuous help, combined with her sincere support obliged me to bear the responsibility toward this work.

I am greatly indebted to **Prof. Or. Sahar**Mohamed Ahmed Wassanein Professor of Pediatrics,
Faculty of Medicine, Ain Shams University. To her I owe
much more than I could express and much more than I
could repay for sharing her expertise and valuable time.

It's also an honor to express my thanks to **Dr.**Moureldin Mohamed Abdelaal Lecturer of Pediatrics,
Faculty of Medicine, Ain Shams University for his
guidance and continuous support.

I am sincerely thankful to **Dr. Eman Khairy Farahat** Assistant Prof. of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her continuous helpful suggestions and interest during the course of this study.

Last but not least, I would like to thank my Family, my colleagues, my patients, and every one helped me to accomplish this work.

Hoda Abd El Rahman

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Abstract	xi
Introduction	1
Aim of the Work	4
Review of Literature	
Neonatal Hemodynamics	5
Cardiovascular Compromise in Neonatal Shock.	14
Cardiovascular Compromise in Persistent Pulme Hypertension of Newborn	•
Functional Echocardiography in Critically-Ill Ne	eonates50
Amplitude-Integrated Electroencephalography	68
Neuron-Specific Enolase	80
Patients and Methods	83
Results	104
Discussion	133
Summary	152
Conclusion	157
Recommendations	158
References	159
Arabic Summary	

List of Tables

Table No.	Title Pag	je No.
Table (1):	Mechanisms of neonatal shock	15
Table (2):	Commonly used inotropes and vasopressor	
	drugs in neonatal shock	32
Table (3):	Bedside focused echocardiography in neonatal shock	
Table (4):	Reference values of blood flow	
	measurements in mean (SD) mL/kg/min	
Table (5):	Grading of pulmonary hypertension	
Table (6):	Serum NSE levels in different age groups	
Table (7):	Variables of SNAP II score	
Table (8):	Cerebral function monitoring scoring system	
	(Burdjalov score)	
Table (9):	Demographic data of the studied neonates	105
Table (10):	Clinical data of the studied neonates	106
Table (11):	Comparison between mild, moderate and	
	severe SNAP II scores for aEEG "Burdjalov	
	score" among the studied neonates at initial	
	assessment.	108
Table (12):	Initial and follow up Fn-Echo parameters	
	among the studied neonates	
Table (13):	Initial and follow up aEEG parameters	
	among the studied neonates	
Table (14):	Comparison between blood pressure values	
	for aEEG "Burdjalov score" parameters at	
	initial assessment.	
Table (15):	Comparison between Fn-Echo parameters	
	for aEEG "Burdjalov score" parameters at	
T 11 (10)	initial assessment.	
Table (16):	Correlation of blood pressure values with	
m 11 /==\	aEEG total score at initial assessment	
Table (17):	Correlation between Fn-Echo parameters	
	and aEEG total score at initial assessment	116

List of Tables (Cont...)

Table No.	Title	Page No.
Table (18):	Correlation between Fn-Echo parame	eters
	and aEEG total score at follow up	117
Table (19):	Serum lactate and NSE levels among	the
	studied neonates	118
Table (20):	Correlation of serum NSE and lac	etate
	levels, with initial and follow up Fn-I	Echo
	parameters	119
Table (21):	Correlation of serum NSE and Lac	etate
	levels, with initial and follow up aEEG t	total
	score	121
Table (22):	Comparison of the initial Fn-I	Echo
	parameters among survivors versus	non-
	survivors	123
Table (23):	Comparison of the follow up Fn-H	Echo
	parameters among survivors versus	
	survivors	124
Table (24):	Comparison of the initial aEEG parame	eters
	among survivors versus non-survivors	
Table (25):	Comparison of the follow up al	${f EEG}$
	parameters among survivors versus	non-
	survivors	126
Table (26):	Comparison of serum lactate and l	
	levels among survivors versus non-survi	
Table (27):	Logistic regression analysis for predictor	rs of
	mortality among the studied neonates	129
Table (28):	Cutoff levels of SVC flow, RVO and R	VSP
	for mortality prediction	130
Table (29):	Cutoff values of aEEG total scores	for
	mortality prediction	131
Table (30):	Cutoff values of serum lactate and I	NSE
	levels for mortality prediction	132

List of Figures

Title F	Page No.
neonatal circulation	7
Relationship between oxygen delive	ery
and oxygen consumption	10
Factors contributing to cardiovascul	ar
<u> </u>	
_	
- ·	
	•
· · · · · · · · · · · · · · · · · · ·	
•	
Common echocardiographic window	ws
echocardiography	51
	Schematic diagram showing even during transition of circulation: fetal neonatal circulation

List of Figures (Cont...)

Fig. No.	Title Pag	e No.
Figure (14):	Hemodynamic differentiation of shock	
	by echocardiographic assessment	53
Figure (15):	Physiological variation in inferior vena	
	cava diameter	54
Figure (16):	Measurement of RVO	58
Figure (17):	Probe Position (A), Doppler (B) and PWD (C) of SVC flow	59
Figure (18):	Long axis parasternal view of the left	
	ventricle	61
Figure (19):	Assessment of diastolic function	
_	Quantitative assessment of pulmonary	
	artery systolic pressure (PASP) by	
	measuring tricuspid valve regurgitation	
	velocity (TR jet)	65
Figure (21):	Doppler pattern of ductal flow	
_	Dilated IVC and low velocity	
	bidirectional flow on Pulsed-wave	
	Doppler	67
Figure (23):	Two channels electroencephalography	
_	Sleep-wake cycling	
	Burdjalov classification	
	Hellström-Westas classification	
•	Two channels (C3-P3, C4-P4) aEEG	
	electrodes position.	93
Figure (28):	Neuron specific enolase standard curve	
	Flow chart of the studied neonates	
_	Correlation between systolic blood	
	pressure and aEEG total score among	
	the studied neonates at initial	
	assessment	114
Figure (31):	Correlation between diastolic blood	
5 , /	pressure and aEEG total score among	
	the studied neonates at initial	
	assessment	115

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (32):	Correlation between mean blo pressure and aEEG total score amount the studied neonates at init	ong tial
Figure (33):	assessment	and
Figure (34):	Correlation between SVC flow at foll up and serum lactate level at enrollment	low
Figure (35):	Correlation between RVO at follow and serum lactate level at enrollment	up
Figure (36):	Correlation between aEEG total score follow up and serum NSE level enrollment	e at at
Figure (37):	Correlation between aEEG total score follow up and serum lactate level	e at at
Figure (38):	Cutoff levels of SVC flow, RVO a	and
Figure (39):	RVSP values for mortality prediction. Cutoff values of aEEG total scores initial and follow up assessment	at
Figure (40):	mortality prediction. Cutoff values of serum lactate and N	131
G - (- /	levels for mortality prediction	

List of Abbreviations

Abb.	Full term
AC	: Adenylate cyclase
ACCM	: American College of Critical Care Medicine
$aEEG \dots a$: Amplitude-integrated electroencephalography
Ao	: Aorta
	: Atrial contraction wave
<i>BE</i>	: Base excess
<i>BLP</i>	: Bacterial lipopeptide
<i>BP</i>	: Blood pressure
Ca	: Calcium
<i>cAMP</i>	: Cyclic adenosine monophosphate
<i>CBF</i>	: Cerebral blood flow
<i>CDH</i>	: Congenital diaphragmatic hernia
<i>CFM</i>	: Cerebral function monitoring
CI	: Confidence interval
<i>CHD</i>	: Congenital heart disease
cGMP	: Cyclic guanosine monophosphate
<i>CPAP</i>	: Continuous positive airway pressure
<i>CRT</i>	: Capillary refill time
CNS	: Central nervous system
CO	: Cardiac output
COX	: Cyclooxygenase enzyme
<i>CPP</i>	: Cerebral perfusion pressure
<i>CSF</i>	: Cerebrospinal fluid
<i>CW</i>	: Continuous-wave mode of Spectral Doppler
<i>DA</i>	: Ductus arteriosus
Desc Ao	: Descending aorta
<i>DIC</i>	: Disseminated intravascular coagulation
DO2	: Oxygen delivery
E:A ratio	: E and A wave velocities ratio
<i>ECMO</i>	: Extracorporeal membrane oxygenation
<i>EF</i>	: Ejection fraction
<i>EOS</i>	: Early onset sepsis
<i>ET-B</i>	: Endothelin receptor- B

Abb.	Full term
MAS	Meconium aspiration syndrome
<i>MPI</i>	Myocardial performance index
<i>Mv</i>	Mitral valve
n	Number
<i>NEC</i>	Necrotizing enterocolitis
<i>NO</i>	
<i>NSE</i>	Neuron-specific enolase
	Near-infrared spectroscopy
	Neonatal intensive care unit
OER	Oxygen extraction ratio
	Oxygenation index
	Oxygen saturation index
	· Progenitor cells
	Arterial partial pressure of carbon dioxide
	Arterial partial pressure of oxygen
	Pressure gradient
	Pulmonary artery systolic pressure
	Patent ductus arteriosus
PDE3	Phosphodiesterase 3 enzyme
	Phosphodiesterase 5 enzyme
	Patent foramen ovale
PGI2	Prostacyclin
PGIS	Prostacyclin synthase
	Prostaglandin
PGs	r $Prostaglandins$
PEEP	Positive end-expiratory pressure
P/F ratio	
	Pulmonary hypertension
	Peak inspiratory pressure
<i>PLAX</i>	Parasternal long axis
	· Postmenstrual age
	· Postnatal age
<i>PPHN</i>	Persistent pulmonary hypertension of the newborn

Full term

Abb.

PROM: Premature rupture of membranes PSAX....: Parasternal short axis PVL: Periventricular leukomalacia PVR.....: Pulmonary vascular resistance PW.....: Pulsed-wave mode of Spectral Doppler QS.....: Quiet sleep RA....: Right atrium RAP....: Right atrial pressure RDS.....: Respiratory distress syndrome ROC: Receiver operating characteristic curve ROS.....: Reactive oxygen species RPA.....: Right pulmonary artery rSO2.....: Regional tissue oxygenation RSVP: Right ventricular systolic pressure RV....: Right ventricle RVO: Right ventricular output RVSP: Right ventricular systolic pressure SaO2: Arterial oxygen saturation SBF.....: Systemic blood flow SD: Standard deviation sGC: Soluble guanylate cyclase SIMV.....: Synchronized intermittent mandatory ventilation SNAP II: Scoring for acute neonatal physiology SVC....:: Superior vena cava SVO2....: Venous oxygen saturation SVR.....: Systemic vascular resistance SWC: Sleep-wake cycling TI:: Inspiratory time TTN....:: Transient tachypnea of newborn TR: Tricuspid regurgitation TV....: $Tidal\ volume$ Tv: Tricuspid valve v: Blood velocity

Abb. Full term

Vmax: Peak velocity
Vmax TR: Peak velocity of tricuspid regurgitation jet
VO2: Oxygen consumption
VO2/DO2: Oxygen extraction ratio
V/Q: Ventilation/perfusion
VTI: Velocity time integral
W/AS:: Wakefulness/active sleep
WMI: White Matter Injury
WBC: White blood cell

ABSTRACT

Background: Amplitude-integrated electroencephalography (aEEG) has been used in clinical research to study the relationship between changes in neonatal cardiovascular function and brain activity.

Aim of the Work: To evaluate the impact of cardiovascular compromise on cerebral cortical activity (aEEG measurements) in non-asphyxiated neonates with persistent pulmonary hypertension of newborn (PPHN) or those with shock and hypotension and to identify neonates at risk for neurologic compromise and the relevance of an abnormal aEEG trace to associated hemodynamic changes, therapeutic interventions and short-term clinical outcome measures in these neonates.

Study design: Fifty critically-ill neonates (30-38 weeks' gestation) with cardiovascular compromise; septic shock and hypotension (n=20), persistent pulmonary hypertension of newborn (PPHN) (n=5), or both (n=25), were enrolled into a prospective observational cohort study. All newborns were subjected to thorough history taking and clinical examination. SNAP II scoring and cardiorespiratory therapeutic interventions were recorded. Serum lactate and neuron specific enolase (NSE) levels were measured at enrollment. Functional echocardiographic evaluation and aEEG monitoring were commenced within the first 24 hours of enrollment and repeated 48-72 hours from weaned inotropic support (n=38), with follow-up of the patients to report their final outcome.

Results: Total aEEG scores were significantly lower among neonates with severe SNAP II score as compared to those with mild and moderate scores (p = 0.021). Initial superior vena cava (SVC) flow, right ventricular output (RVO) values and total aEEG scores were significantly lower (p=0.000, p=0.000, p=<0.001 respectively) in comparison to their corresponding follow-up records. Survivors (n=27) had significantly higher aEEG scores at initial and follow up assessment (p=0.002 & p=0.000) and significantly lower serum lactate and NSE levels (p=0.000 respectively), as compared to non-survivors. A significant positive correlation was found between total aEEG score and mean arterial blood pressure (r=0.504, p=0.000) at initial assessment, meanwhile, follow-up aEEG total scores were inversely correlated with both serum lactate and NSE levels (r=-0.455 & p=0.004) and (r = -0.488 & p = 0.002) respectively. Logistic regression analysis revealed that serum lactate level of > 34.3 mg/dl was a significantly high risk factor of mortality prediction with odds ratio (95% CI) of 44.00 (5.085 - 380.71), p = 0.001. ROC curve analysis showed NSE at cutoff value > 50 ng/ml has 83.3% PPV, 88.5% NPV, 86.96% sensitivity and 85.19% specificity for mortality prediction.

Conclusion: Significant derangement of brain electrical activity is encountered in critically-ill neonates with cardiovascular compromise. It could be speculated that aEEG monitoring of these neonates might help to predict their short-term clinical outcomes.

Keywords: neonatal shock; PPHN; functional echocardiography; amplitude-integrated electroencephalography (aEEG).