Cairo University
Faculty of Archaeology
Conservation Department

Experimental study on evaluation of the efficiency of metallic nanoparticles and essential oil nanoemulsions in disinfection of microbial deterioration of historical parchment applying on a selected object

By

Nagah Sabry Hussien Saada

Conservator at Egyptian Museum of Cairo

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of art

In

Conservation Sciences

Supervision committee

Prof.Dr. Gomaa Mohamed Mahmoud Abdel-Maksoud

Professor, Conservation Dep. Fac. Arch. Cairo University

Prof.Dr. Ahmed Mahmoud Youssef

Professor, Department of Packing and Packaging Materials

National Research Center

Abstract

Parchment was used as a writing material and as a support for many forms of art works from about 200 BC until late medieval times, when it was supplanted by paper.

Biodeterioration is an important factor impairing aesthetic, functional and other properties of parchment. It takes place particularly under condition of high relative humidity that enables bacteria, actinomycetes or fungi to grow. Many chemical and physical methodologies have been applied in order to protect different art forms from microbial deterioration but most of them had some disadvantages. For instance some of them are toxic and restricted in some countries; others induce change of color or reduction of tensile properties of treated objects. So we thought to utilize nanotechnology in this side as some nanomaterials proved their effect as antimicrobial agents in several fields of life such as medicine and food industry also there are some applications in the field of conservation of historical materials in consolidation, deacidification or self-cleaning. There are also limited numbers of researches about the possibility of using these nanomaterials in disinfection of biodeteriorated museum artifacts and historical objects.

In this study disc agar diffusion method and Colony forming units (CFU) were established to estimate the ability of silver and titanium dioxide nanoparticles and lemongrass and tea tree oils in their normal and nanostate to kill and inhibit the growth of four strains of microorganisms; three fungal and one bacterial isolated from historical parchment manuscript and molecularly identified and examined for their abilities to hydrolyze collagen fibers of parchment.

The promising materials were used to treat parchment samples and examined for their impact on aesthetic, physical and chemical structure of parchment before and after aging; mechanical properties (tensile strength & percent elongation), Fourier transform infrared spectroscopy, scanning electron microscopy and change of color of treated and aged parchment were conducted to stand on the possibility of using these materials in disinfection of historical parchment manuscripts.

Keywords

Parchment
Collagen fibers
Deterioration
Degradation
Microbial
Fungi
Actinomycetes
Disinfection
Nanoparticles
Nanoemulsions
Silver nanoparticles
Titanium dioxide nanoparticles
Essential oils nanoemulsions
Lemongrass
Tea tree
Tensile strength
Elongation
FTIR analysis
SEM micrographs
Color change
TEM
Zeta potential

ACKNOWLEDGEMENTS

I'm grateful in particular...

First of all, I am grateful to "Allah" for giving me the power and patience to finish this work in spite of all the hurdles and difficulties that I faced to complete this thesis;

I would like to express my sincere gratitude and appreciation for the support and help of my supervisors. To Prof. Dr. Gomaa Mohamed Mahmoud Abdel-Maksoud from Conservation department - Faculty of Archaeology - Cairo University; thanks a lot for continuous guidance, teaching, support and encouragement...thank you so much.

I am so thankful to Prof. Dr. Ahmed Mahmoud Youssef, Department of packing and packaging materials - National Research Center for all his effort to overcome the difficulties and finalize this work within presumed and planned timeframe to achieve such a work.

A main proportion of this work was undertaken at Microbial Chemistry Department- National Research Centre; therefore, I would like to thank Prof. Dr. Mohamed El-Sayed Abdel-Aziz, Microbial Chemistry Department, Genetic Engineering and Biotechnology Division- National Research Centre for his help, support and patience towards the completion of this work with a lot of passion.

Lastly, but certainly not least I would like to acknowledge my family for their love, understanding and support throughout my work.

And I would like to extend endless thanks to my friends for helping me get through the past few years. I am also grateful to all people helping me during the master period and which are not mentioned by name.

Special

Dedication

for

G dedicate this thesis on the soul of my dear mother.

Number	Title	Page no.
>	List of Figures	I
>	List of Tables	IV
>	List of Abbreviations	VII
	Introduction	
>	Introduction	2
>	Aims of the study	6
	Chapter 1: Literature review	
1.1	The mechanism of microbial deterioration of historical parchment	8
1.2	Chemical and Nonchemical methods in treatment of microbial deterioration	12
1.3	Metallic nanoparticles as antimicrobials	13
1.3.1	Silver nanoparticles in disinfection	15
1.3.1.1	Mechanism of Ag-NPs in disinfection	18
1.3.2	Titanium dioxide (TiO ₂) nanoparticles as antimicrobial agent	21
1.3.2.1	Mechanism of TiO ₂ -NPs in disinfection	29
1.4	The efficacy of essential oil nanoemulsions in disinfection	31
1.4.1	Lemongrass oil nanoemulsion as antimicrobial agent	34
1.4.2	Tea tree oil nanoemulsion as antimicrobial agent	38
1.4.3	Mechanism of essential oil in disinfection	40
1.5	Parameters that affect the process of disinfection	48
1.5.1	Concentration	48
1.5.2	Particle size	49
1.5.3	Particle shape	50
1.5.4	Microbial susceptibility	51
1.5.5	Microbial growth stage	55
1.5.6	Factors affecting the photocatalytic activity during the process of disinfection	56
1.5.6.1	Crystal structure	56
1.5.6.2	Time of irradiation	56
1.5.6.3	Light intensity	56
1.5.6.4	The effect of the different UV lights	57

Continue	d	
Content	Content	Page
no.		no.
	Factors affect the experimental outcomes of antimicrobial tests of	
1.5.7	essential oils	57
1.5.8	Other factors that may affect the process	58
1.5.8.1	Stability of nanoparticles in the solution	58
1.5.8.2	The electrostatic attraction between nanoparticles and bacterial	58
1.3.0.2	cells	30
1.5.8.3	The degree of temperature	59
1.5.8.4	The method of preparation	60
	Chapter 2: Materials and methods	
2.1	Materials used in experimental study	62
2.1.1	Parchment samples Sampling and isolation of misoschiol studies	62
2.1.2	Sampling and isolation of microbial strains Fungal strains identification	62
2.1.3.1	Preparation of template DNA	63
2.1.3.2	PCR	64
2.1.3.3	Purification of PCR products	64
2.1.3.4	Sequencing	64
2.1.4	Identification of Streptomycete strain	65
2.1.5	Microbial degradation of the parchment samples	65
2.1.6	preparation of nanomaterials	65
2.1.6.1	Preparation of silver nanoparticles	65
2.1.6.2	Preparation of titanium dioxide nanoparticles	66
2.1.6.3	Preparation of essential oils nanoemulsions	66
2.1.7	Antimicrobial activities of prepared materials	66
2.1.7.1	Disc agar diffusion method	66
2.1.7.2	Colony forming units (CFU)	67
2.1.7.3	Microbial degradation of treated parchment samples	68
2.2	Methods used in experimental study	69
2.2.1	Accelerated thermal aging	69
2.2.2	Mechanical properties	69
2.2.3	Fourier Transform Infrared spectroscopy (FTIR)	69
2.2.4	Scanning electron microscopy (SEM) examination	70

Continued				
Content	Content	Page		
no.		no.		
2.2.5	Color change	70		
2.2.6	Transmition electron microscopy (TEM) analysis of prepared	70		
2.2.0	nanoparticles	70		
2.2.7	Zeta potential of prepared nanomaterials	71		
2.2.8	Ultra Violet (UV) photography	71		
	Chapter 3: Results and Discussion			
3.1	Evaluation of the biodegradable ability of specific microorganisms parchment	73		
3.1.1	Molecular Identification of the isolates N1, N2, SPN and SP11	76		
3.1.2	Mechanical properties	87		
3.1.3	Fourier transforms infrared spectroscopy (FT-IR)	90		
3.1.4	Investigation of the surface morphology by SEM	95		
3.1.5	Change of color	97		
3.2	The antimicrobial efficiency of the selected nanomaterial against identified microbes	100		
3.2.1	characterization of prepared nanomaterials	100		
3.2.1.1	Transmission electron microscopy (TEM) analysis of prepared nanoparticles	100		
3.2.1.2	Zeta potential of prepared nanomaterials	101		
3.2.2	Antimicrobial activities of prepared materials	103		
3.2.2.1	Antimicrobial activities by disc agar	103		
3.2.2.2	Microbial growth reduction using colony forming units (CFU)	122		
3.2.2.3	Microbial degradation of treated parchment samples	124		
3.2.3	Investigation of treated parchment samples	126		
3.2.3.1	Mechanical properties of treated parchment samples	126		
3.2.3.2	Fourier transforms infrared spectroscopy (FTIR) analysis	129		
3.2.3.3	Scanning electron microscopy (SEM) analysis	133		
3.2.3.4	Change of color	135		
3.2.4	Investigation of aged parchment samples	139		
3.2.4.1	Mechanical properties	139		
3.2.4.2	Fourier Transform Infrared Spectroscopy (FTIR)	142		
3.2.4.3	Scanning electron microscopy (SEM) analysis of aged samples	146		
3.2.4.4	Color change	148		

Continue	d		
Content	Content	Page	
no.		no.	
	Chapter 4: Applied study		
4.1	Historical back ground	152	
4.2	documentation procedures	152	
4.2.1	Visual assessment by photography and AutoCAD	152	
4.2.2	Examination and analysis procedures	156	
4.2.2.1	Ultra Violet (UV) photography	156	
4.2.2.2	Scanning electron microscope (SEM)	158	
4.2.2.3	Fourier Transform Infrared spectroscopy (FTIR)	158	
4.3	conservation treatments	162	
4.3.1	Cleaning	162	
4.3.2	Removing inappropriate old restoration	164	
4.3.3	Humidification	166	
4.3.4	Repairing and Mending tears	166	
4.3.5	Infilling of Losses	167	
4.3.6	Disinfection of the parchment sheet	168	
4.3.7	Flattening, tensioning and drying	168	
4.3.8	Storage condition	170	
Summary			
>	Summary	172	
Conclusions and recommendations			
1	Conclusions	180	
2	Recommendations	183	
References			
>	References	186	
>	Arabic summary	Í	

List of Figures

Figure no.	Title	Page no.
Fig. 1	Various modes of action of silver nanoparticles on bacteria.	20
Fig. 2	Schematic illustration of TiO ₂ electronic structure characterized by its valence (VB) and conduction band (CB) energy positions	26
Fig. 3	Photocatalysis mechanism of titanium dioxide	26
Fig. 4	Chemical structure of the citral, the major bioactive compound in lemongrass oil	36
Fig. 5	Chemical structure of the major constituents of lemongrass essential oil	36
Fig. 6	Possible antibacterial mechanism of action of C. citratus essential oil	41
Fig. 7	Antimycotic mechanism of action of C. citratus essential oil and its active constituents	43
Fig. 8	Nanoemulsion's mechanism of action against spores	47
Fig. 9	Nanoemulsions kill microbes by a physical mechanism	47
Fig. 10	The isolated fungal strains (N1, N2, N3, N4, N5 and SPN) and bacterium (SP11) from ancient parchment from Quran found in Al-Azhar liberary.	74
Fig. 11	Aligned sequence data (1563 bp) of 18rDNA amplified from strain N1	79
Fig. 12	Aligned sequence data (1439 bp) of 18rDNA amplified from strain N2	79
Fig. 13	Aligned sequence data (543 bp) of 18rDNA amplified from strain SPN	80
Fig. 14	Aligned sequence data (895 bp) of 18rDNA amplified from strain SP11	80
Fig. 15	AB1 chromatogram of DNA sequencing of the isolate N1	81
Fig. 16	AB1 chromatogram of DNA sequencing of the isolate N2	82
Fig. 17	AB1 chromatogram of DNA sequencing of the isolate SPN	83
Fig. 18	AB1 chromatogram of DNA sequencing of the isolate SP11	84