

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTOR

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

BIEYSI

STUDIES ON SOME MITES ASSOCIATED WITH HONEY BEES IN EGYPT

Thesis Submitted in Partial Fulfillment for the Degree of Master of Science

In Zoology

By

GHADA SALAH MOHAMED REFAEI B.Sc. (Zoology)

Department of Zoology
Faculty of Science
Cairo University

APPROVAL SHEET

Title of M.Sc. Thesis:

STUDIES ON SOME MITES ASSOCIATED WITH HONEYBEES IN EGYPT

Name of the Candidate:

GHADA SALAH MOHAMED REFAEI

Submitted to the:

Faculty of Science, Cairo University

Supervision Committee:

1- Prof. Dr. Abdel-Rahman M. Bashtar
Professor of Parasitology and Protozoa
Faculty of Science, Cairo University

2- Prof. Dr. Mahmoud E. El-Naggar
Professor of Acarology, Director of
Plant Protection Research Institute,
Agric. Res. Center, Min. of Agric.

1 or 19 gar

ARBas Mac

Head of Zoology Department

Prof. Dr. Mohamed Ismail Mohamed

CONTENTS

ŧ į

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1- Survey	3
	2.2- Physiological Studies	9
	2.3- Control Studies	13
	2.4- Biological Studies	17
3.	MATERIALS AND METHODS	
	3.1- Survey	· 22
	3.1.1- Detection and collection of mites	22
	3.1.2- Specimen identification	23
	3.2- Physiological Studies	23
	3.2.1- Preparing, honeybee colonies and sampling	24
	3.2.2- Haemocytological techniques	24
	3.3- Control Studies	25
	3.4- Biological Studies	26
	3.4.1- Collection and specimen identification	26
	3.4.2- Rearing procedure	26
	3.4.3- Source of food (Fungal culture)	27
4.	RESULTS AND DISCUSSION	28
	4.1- Survey	28
	4.1.1- Suborder: Mesostigmata	31
	4.1.2- Suborder : Prostigmata	34
	4.1.3- Suborder : Astigmata	37
	4.1.4- Suborder: Cryptostigmata	. 38
	4.2- Physiological Studies	39
	4.2.1- Non-phagocytic cells	39
	4.2.2- Phagocytic cells	40

CONTENTS: Continued

		Page
	4.3- Control Studies of <i>Varroa jacobsoni</i>	58
	4.3.1- Thymol mixture	58
	4.3.2- Clove oil	61
	4.4- Biology	62
	4.4.1- Biological aspects	62
	4.4.2- Duration of stages	67
5.	SUMMARY AND CONCLUSION	72
6.	REFERENCES	77
	ARABIC SUMMARY	

ACKNOWLEDGEMENT

Firstly, ultimate thanks to GOD who gave all causes for accomplishing this work.

The authoress wishes to express her deep appreciation and is grateful to **Prof.Dr. Abdel-Rahman Bashtar**, Professor of Parasitology and Protozoa, Zoology Department, Faculty of Science, Cairo University, for supervising this work and for his useful, valuable criticism, deep interest in the study and correction of the manuscript.

I would like to express my deepest gratitude and sincere appreciation to **Prof.Dr. Mahmoud El-Sayed El-Naggar**, Professor of Acarology, Director of Plant Protection Research Institute, Agricultural Research Center, for his supervision, close relation during the all lines of this study, facilities offered and valuable advice.

.Sincere thanks are due to all members of Acarology Department, Plant Protection Research Institute, Agric. Res. Center, for their collaboration in this study. Introduction

1. INTRODUCTION

Honey bees are considered the most important beneficial insects, which have a direct and indirect roles in agricultural production. Honey is the main product of this insect, and there are additional products such as: royal jelly, pollen, wax, propolis and poison. The role of honey bees in the pollination of flowering plants lead to an increase in agricultural products and an improvements in the product quality (Allam, 1994).

Honey bees (*Apis mellifera* L.), similarly to other social insects in their habitats, is accompanied by numerous arthropods, a great number of which belongs to mites (Acarina). Relations between mites and bees are of a diverse character. These mites may be either ectoparasites, or endoparasites, phoretic mites and house guests.

Diseases of bees caused by parasitic mites are especially interesting from the scientifical point of view and have a great economic importance. The literature on these species is very rich, but the knowledge on other mite species associated with bees, their biology, their nests and stored hive products is rather poor (Chmielewski, 1989).

Varroa jacobsoni Oud. is an ectoparasite of the Asian honey bee Apis cerana, has been introduced world wide, and is currently decimating colonies of the European honey bee Apis mellifera (Donze and Guerine, 1994). This mite presents serious problems in world beekeeping due to its parasitic relationship with Apis mellifera (Griffiths and Bowman, 1981). It feeds on haemolymph of broods, drones and workers, causing serious damage to colonies, decrease broods and emerging bees (De Jong et al., 1982a).

Efforts to control *V. jacobsoni* have focused on the evaluation of synthetic acaricides. Fluvalinate and amitraz (Henderson, 1988; Herbert *et al.*, 1988a, b; Witherell and Herbert, 1988), clofentezin (Yoshida and Fuchs, 1989), apitol (Herbert *et al.*, 1988b), chlorobenzilate (Ritter and Czarnecki, 1982) and coumaphos (De Ruijter and van den Eijnde, 1986) all have been shown to provide effective control.

However, synthetic acaricides have significant drawbacks, including adverse consequences resulting from the inadvertent contamination of honey, wax, and pollen. Natural acaricides offer a highly desirable alternative to these synthetic products. They tend to have low mammalian toxicity, little environmental effect, and wide public acceptance (Calderone and Spivak, 1995).

The objectives of the present study is to investigate the following points:

- 1- Incidence of mites associated with honey bees in Egypt and their distribution among different governorates.
- 2- Effect of *Varroa jacobsoni* infestation on the haemocytes of workers honey bee *Apis mellifera*.
- 3- Control of *Varroa jacobsoni* using natural product substances under Egyptian conditions.
- 4- Biological observations of the Astigmatic mite *Rhizoglyphus robini* Claparéde, found in beehives debris.

Review of Literature

2. REVIEW OF LITERATURE

Hives of honey bees, *Apis mellifera* are suitable habitat for diverse mites including parasites, phoretic mites and house guests. The association between mites and honey bees was studied allover various countries of the world, and it has been noticed from reviewing the literature that the parasitic mite *Varroa jacobsoni* is considered as the most widespread pest of *Apis mellifera*.

2.1- Survey:

Twenty-nine species of mites were found in normal colonies of bees (Betts, 1934) in Germany; many of these, were carried back to the hive from flowers visited by foraging bees. So, several mite species were found associated with honey bees in Australia (Veitch, 1936; Simmonds, 1949; Eckert, 1959; Roff and Brimblecombe, 1961; Waite and McAlpine, 1992 and Knihinicki and Halliday, 1995). Also, Seeman and Walter (1995) investigated the life history of Afrocypholaelaps africana Evans on honey bees in southeastern Queensland. On the other hand, Benoit (1959) reported Acarapis woodi from Belgian Congo. While, Brimblecombe and Roff (1960) recorded A. woodi on a worker honey bees from California.

Krantz (1962) found two genera of Macrochelidae associated with stingless bees. Delfinado (1963) revealed that *V. jacobsoni* and *Tropilaelaps clareae* in association with honey bees causing its death. In Newzealand, Clinch and Ross (1970) found *Acarapis externus* Morgenthaler, *Acarapis dorsalis* Morgenthaler, and *Acarapis vagans*