

AIN SHAMS UNIVERSITY Women's College for Arts, Science and Education Zoology Department

Study of Evolutionary Dynamics of tRNA Genes in Cichlidae Family using the Comparative Mitogenomic Approach

A Thesis Submitted
In partial fulfillment for the requirement of
the M.Sc. degree in Zoology
By
YOSUR GAMAL ABDEL-HAMID FITEHA

Zoology Department, Women's College for Arts, Science and Education, Ain Shams University

Under supervision of

Prof. Dr. Ramadan Ahmed Mohamed Ali

Professor of Cytogenetics and Molecular Biology, Zoology Dept., Women's College for Arts, Science and Education, Ain Shams University

Prof. Dr. Mohamed Abd El-Salam Rashed

Emeritus Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Magdy Abdallah Awad

Associate Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University

AIN SHAMS UNIVERSITY Women's College for Arts, Science and Education Zoology Department

Study of Evolutionary Dynamics of tRNA Genes in Cichlidae Family using the Comparative Mitogenomic Approach

A Thesis Submitted
In partial fulfillment for the requirement of the M.Sc. degree in Zoology

By YOSUR GAMAL ABDEL-HAMID FITEHA

Zoology Department - Women's College for Arts, Science and Education, Ain Shams University

For the Degree of M. Sc. in Zoology (Genetics & Molecular Biology)

Name: Yosur Gamal Abdel-Hamid Fiteha

Title: Study of Evolutionary Dynamics of tRNA Genes in Cichlidae Family using the Comparative Mitogenomic Approach

Scientific degree: Master of Science.

Under supervision of

Prof. Dr. Ramadan Ahmed Mohamed Ali

Professor of Cytogenetics and Molecular Biology, Zoology Dept., Women's College for Arts, Science and Education, Ain Shams University

Prof. Dr. Mohamed Abd El-Salam Rashed

Emeritus Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Magdy Abdallah Awad

Associate Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University

Approval Sheet

Name: Yosur Gamal Abdel-Hamid Fiteha

Title: Study of Evolutionary Dynamics of tRNA Genes in

Cichlidae Family using the Comparative Mitogenomic

Approach

Scientific degree: Master of Science (M.Sc.).

This thesis has been approved by:

Prof. Dr. Fajr Khamis Abdel-Gawad

Professor of Fish Genetics, National Research Centre.

Prof. Dr. Karima Mohammed Sweify

Professor of Cytogenetics and Molecular Biology, Women's College for Arts, Science and Education, Ain Shams University.

Prof. Dr. Mohamed Abdel-Salam Rashed

Professor of Molecular Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University.

Prof. Dr. Ramadan Ahmed Mohamed Ali

Professor of Cytogenetics and Molecular Biology, Women's College for Arts, Science and Education, Ain Shams University.

Head of Zoology Department

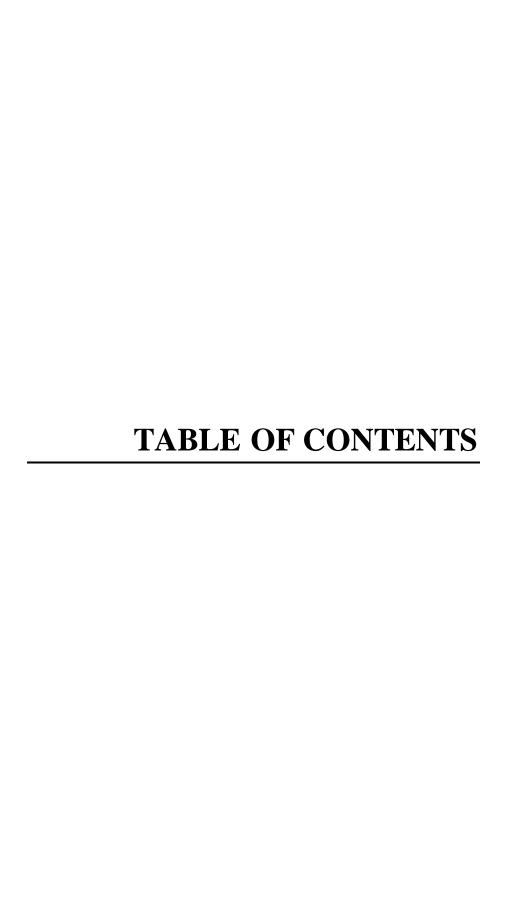
Women's College for Arts, Science and Education

Ain Shams University

No one walks alone in this journey, I was blessed to have great supervisors, wonderful family, and friends; there is no word to describe my gratitude to all of you.

I would like to thank **Prof. Dr. Ramadan Ali**, Professor of Cytogenetics and Molecular Biology for his kind supervision, guidance, and support.

My sincere thanks to **Prof. Dr. Mohamed Abdel-Salam Rashed**, Emeritus Professor of Genetics, Genetics Dept., for his kind supervision, deeply thank him for his supporting, keen interest, advising me and always encourage me, I am grateful to him very much.


I wish if I could express sincere gratitude to **Dr. Mahmoud Magdy**, Associate Professor of Genetics, Genetics Dept.,
who helped me since the first day until now, guided me to
walk and think in the right way, encouraged me, motivated
me, share with me his knowledge and experience in
everything. This thesis accomplished and appeared in this
way with his help. All words are not enough to thank him.

My sincere thanks to **Prof. Dr. Hassan M. El Ashmaoui** Professor of Genetics, National Research Centre, for his moral support, and encouragement. Without his help, I was not able to be here.

I would like to thank **Dr. Amira El-Keredy** Associate Professor of Genetics, Faculty of Agriculture, Tanta University for her helping me either materially or morally.

I would like to thank my colleagues in the laboratory of molecular genetics - Genetics Department, in the Faculty of Agriculture, Ain Shams University. (Dr. Samah Soliman, Hagar Tarek, Moustafa Nafee, Mai Hesham and Zaynab Ibrahim); for their time, experience, help and support. They were patient to the maximum. Special thanks to Dr. Samah Soliman and Hagar Tarek for helping, supporting and guidance's during all stages of work.

No words can express my feeling to my lovely family: Father, Mother, Yomna, Yahia, and Rhaghad; thank you for your patience, support, time, love, enhance and encouragement; you are the greatest blessings in my whole life.

TABLE OF CONTENTS

	Title LIST OF TABLES	Page xii
	LIST OF FIGURES	xvi
	LIST OF ABBREVIATION	xxvi
	LIST OF DEFINITION	XXX
	ABSTRACT	xxxii
	CHAPTER I: INTRODUCTION	1
	AIM OF THE WORK	6
C	CHAPTER II: REVIEW OF LITERATURE	
	2.1 Cichlids	8
	2.2 Tilapia	10
	2.2.1 Economic Importance of Tilapia	10
	2.2.2 Genetic Diversity and Polymorphism in Tilapia	11
	2.3 Mitochondrial genome	14
	2.3.1 Genetic marker	14
	2.3.2 Sequencing of the complete mitochondrial genomes	17
	2.4 Transfer RNA	21
	2.4.1 tRNAscan-SE to detect tRNA	21
	2.3.2 Using tRNA as a molecular marker	23
	2.3.3 Using tRNA in Molecular phylogeny	25
	2.3.3 Mutation and evolution in tRNA	28
	2.4 Amino acid substation	31

TABLE OF CONTENTS

CHAPTER III: MATERIALS AND METHODS	
3.1 Materials	36
3.2 Methods	37
3.2.1 Preliminary Bioinformatics Analysis	37
3.2.2. tRNA Analysis	39
3.2.2.1 DNA extraction	39
3.2.2.2 Agarose gel electrophoresis protocol	41
3.2.2.3 PCR amplification	44
3.2.2.4 DNA sequencing	49
3.2.3 Data Analysis	49
CHAPTER IV: RESULTS	52
4.1 Part I	52
4.1.1 preliminary bioinformatic analysis	52
4.1.2 General characteristics of the Cichlids	55
4.1.3 Detect the variability in the secondary structure	61
4.1.4 The variability in tRNA structure	69
4.2 Amino acid substitution	74
4.3 Part II	77
4.3.1 tRNA analysis	78
4.3.1.1 DNA Extraction	78
4.3.1.2 PCR Amplification, sequencing and alignment	78
4.3.2 Transfer RNA genes in Egyptian tilapiine	79
4.3.3 Assessment of variability	141
4.3.3.1 Polymorphic sites	141
CHAPTER V: DISCUSSION	147
CHAPTER VI: CONCLUSION	164
CHAPTER VII: SUMMARY	165
CHAPTER VIII: REFERENCES	169
ARABIC SUMMARY & ABSTRACT	187

LIST OF TABLES

Table No.	Title	Page No.
Table 1	The sets of primers, name, sequence 5' => 3', temperature, expected length (bp) and amplified successfully (\checkmark) or not (-).	45-46
Table 2	The 74 mitogenomes of cichlids species, names, the accession number, percentage of GC content, Size of mitogenomes, and published (Pub) or unpublished (Un) or cited (Ct).	53-55
Table 3	Annotated mitochondrial tRNA genes in cichlids species. Size of each tRNA, the position in alignment without excluded the gab, and the anticodon.	60
Table 4	Blast results for COI region for 7 samples of Egyptian tilapiine. Including organism name, percentage of GC content, pairwise %, and the accession number.	82-83
Table 5	Basic parameters of the COI gene of mitochondrial DNA in <i>O. niloticus</i> , <i>T. zillii</i> , and <i>S. galilaeus</i> .	84
Table 6	Estimate the genetic differentiation among the common Egyptian tilapiine species based on COI gene.	84

Table 7	Blast results for D-loop region for 8 samples of Egyptian tilapiine. Including organism name, percentage of GC content, pairwise %, and the accession number	91-92
Table 8	Basic parameters of the D-loop region of mitochondrial DNA in Egyptian tilapiine (<i>O. niloticus</i> , <i>T. zillii</i> , and <i>S. galilaeus</i>).	93
Table 9	Estimate the genetic differentiation among the common Egyptian tilapiine species based on D-loop region.	93
Table 10	Blast results for Asp region for 9 samples of Egyptian tilapiine. Including organism name, percentage of GC content, pairwise %, and the accession number.	100
Table 11	Basic parameters of the Asp region of mitochondrial DNA in Egyptian tilapiine (O. niloticus, T. zillii, and S. galilaeus).	101
Table 12	Estimate the genetic differentiation among the common Egyptian tilapiine species based on Asp region.	102
Table 13	Blast results for His region for 9 samples of Egyptian tilapiine. Including organism name, percentage of GC content, pairwise %, and the accession number.	112

Table 14	Basic parameters of the His region of mitochondrial DNA in Egyptian tilapiine (O. niloticus, T. zillii, and S. galilaeus).	113
Table 15	Estimate the genetic differentiation among the common Egyptian tilapiine species based on His region.	114
Table 16	Blast results for Ile region for 9 samples of Egyptian tilapiine. Including organism name, percentage of GC content, pairwise %, and the accession number.	126
Table 17	Basic parameters of the Ile region of mitochondrial DNA in Egyptian tilapiine (<i>O. niloticus</i> , <i>T. zillii</i> , and <i>S. galilaeus</i>).	127
Table 18	Estimate the genetic differentiation among the common Egyptian tilapiine species based on Ile region.	128
Table 19	Genetic variation recorded in seven of tRNA genes in Egyptian tilapiine.	142
Table 20	Estimate the inter and intrapopulation diversity among Egyptian tilapiine species based on selected regions.	139
Table 21	Estimate the inter and intrapopulation diversity among Egyptian tilapiine species based on selected tRNA gene.	140

