

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

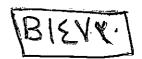
تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO




بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

Effect of <u>Bacillus sphaericus</u> on Different Developmental Stages of <u>Culex pipiens</u> L. and <u>Aedes caspius</u> (P.)

Thesis

Submitted for Partial Fulfillment For Master Degree of Science (M.Sc.) in Entomology

By

AZZA MOHAMED EL-SAYED AMER

BSc. (Entomology) 1987

Supervised By

Dr. R.G. Abou El-Ela

Professor of Entomology Faculty of Science Cairo University

Dr. Salwa S. Rashed

Assistant Prof. of Entomology
Faculty of Science
Zagazig University

Dr. Somia M. Allam

Assistant Prof. of Entomology Faculty of Science Zagazig University - Benha Branch

Dr. Olfat M. El-Monairy

Lecturer of Entomology
Faculty of Science
Zagazig University - Benha Branch

Effect of <u>Bacillus sphaericus</u> on Different Developmental Stages of <u>Culex pipiens</u> L. and <u>Aedes caspius</u> (P.)

Thesis

Submitted for Partial Fulfillment For Master Degree of Science (M.Sc.) in Entomology

AZZA MOHAMED EL-SAYED AMER

B.Sc. (Entomology) 1987

Supervised By

Dr. R.G. Abou El-Ela

Professor of Entomology Faculty of Science Cairo University

Dr. Salwa S. Rashed

Assistant Prof. of Entomology Faculty of Science Zagazig University

Dr. Somia M. Allam

Assistant Prof. of Entomology Faculty of Science Zagazig University - Benha Branch

Dr. Olfat M. El-Monairy

Lecturer of Entomology Faculty of Science Zagazig University - Benha Branch

ACKNOWLEDGEMENT

The authoress wishes to express her deep gratitude and thanks to **Prof. R.G. ABOU EL-ELA**, Professor of Entomology, Faculty of Science, Cairo University, for his supervision, guidance, advice throughout the work and reviewing this thesis.

Thanks are also expressed to Dr. S.M. Allam Assistant Prof. of Entomology, Faculty of Science, Zagazig University, Benha Branch for her kind help and encouragement through the progress of this work.

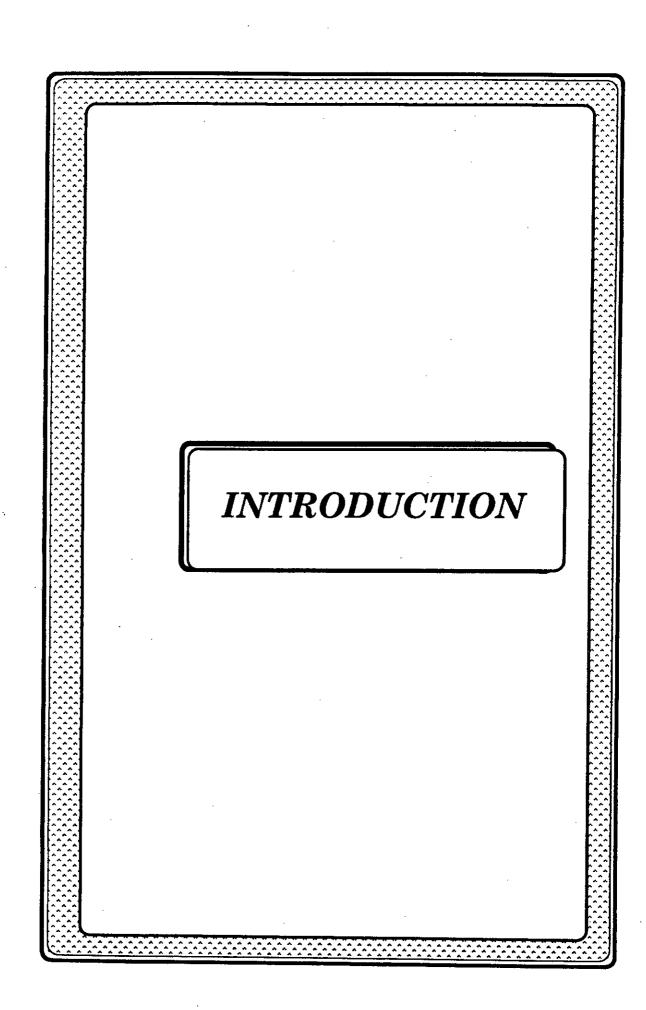
The authoress highly acknowledge with deep appreciation **Dr. S.S. Rashed**, Asistant Prof. of Entomology, Faculty of Science, Zagazig University for her kind help, continuous guidance and reviewing this thesis.

Thanks are also expressed to Dr. O.M. El-Monairy, Lecturer of Entomology, Faculty of Science, Zagazig University Benha Branch for her kind help and reviewing this thesis.

Sincere appreciation is expressed to *Dr. A.O. El-Sayed*, Chemistry Department, Zagazig University, Benha Branch for his contribution in various ways to make this study possible.

The authoress would like to express her thanks to the staff members and colleogues of the Faculty of Science, Zagazig University, Benha Branch, for their help and encouragement.

DIDICATED TO


My Mother,
My Husband,
My Daughter Norana

CONTENTS

		Page
	ACKNOWLEDGEMENT	
I	INTRODUCTION	1
	Aim of the Present Work	4
II	LITERATURE REVIEW	5
-	 Bacterial larvicides against mosquitoes Effect of chemical additives on the potancy of 	5
	bacterial larvicide	8 10
TYT		
Ш	MATERIALS AND METHODS	14
	1. Rearing insect	14
	1.A. Culex pipiens 1.A.1. Origin of stock colony 1.A.2. Laboratory rearing	14
	1.B. Aedes caspius 1.B.1. Origin of stock colony 1.B.2. Laboratory rearing	16
	2. Bioassays of <u>Bacillus sphaericus</u>	17
	2.1. Determination of LC50 of <u>Bacillus</u> sphaericus at different periods of exposure time to <u>B</u> .	
	sphaericus against mosquito larvae 2.2. Effect of chemical additives and phago-	18
	stimulants on potancy of <u>Bacillus sphaericus</u> against <u>C. pipiens</u> and <u>A. caspius</u> larvae	18
	2.2.b. Inorganic and organic compounds2.2.c. Feeding stimulants	
	3.1. Effect of photoprotectives on the efficacy of Bacillus sphaericus against C. pipiens larvae	21
	3.2. Relative absorbance of spores and photoprotectant materials to different light wave lengths	

		Page
IV	RESULTS	24
	1. Susceptibility Experiments	24
	I.a. Bacillus sphaericus against C. pipiens larvae	24
	1.b. <u>Bacillus sphaericus</u> against <u>A. caspius</u> larvae	25
-	2. Effect of chemical additives and phagostimulants on	
	potancy of Bacillus sphaericus on \overline{C} , pipiens and \overline{A} .	
	<u>caspius</u> larvae	28
	2.a. Effect of amino acids	28
	2.b. Effect of organic compounds	31
	2.c. Effect of inorganic salts	33
	2.d. Effect of sugar	35
	2.e. Effect of some nutrative materials	37
-	3.1. Determination of persistance of B. sphaericus	39
	3.2. Absorbance spectra of <u>Bacillus sphaericus</u> and UV	
	absorbers	41
${f v}$	DISCUSSION	43
X / T		
VI	SUMMARY	50
VII	REFERENCES	53
•	ARABIC SUMMARY	

INTRODUCTION

Among blood sucking insects mosquitoes are, by far, the most important pest of man and animals. Their vexatious bites and extraordinary role as vectors of debilitating and fatal diseases such as malaria, filariasis, yellow fever and encephalitides place them in a preeminent position among the enemis of man.

Of these diseases, hyperendemic malaria and filariasis have been major deterrents to human settlements and agricultural development in the tropical and subtropical regions of the world. Moreover, with a rising demand for better public health standards on a global basis, there has been a continuous need to obtain a sound and most effective method of mosquito control. In the struggle for the control of harmful insects in general and mosquitoes in particular, great efforts have been made since the beginning of the twentieth century. Several chemical insecticides have been employed in the control and prevention of mosquitoes for both mature and immature stages. The consistant employment of the insecticides in mosquito control possesses a continuous threat of the development of mosquito resistance and hazards to non-target organisms in the environment.

Because of these considerations and increasing of the environmental consequences, an everlasting need to develop new, safe and promising insecticides as an alternative method for insect control will prevail in order to obtain desired public health standars. Among the most promising alternatives to chemical pesticides for vector control are the microorganisms which are pathogenic to the vectors but are not pathogenic to other invertebrates or to vertebrates. Many pathogens of vectors are known, but only a few of these have potential for mosquito vector control (Arata, 1977). Two spore-forming bacilli, Bacillus thuringiensis Var israelensis [also called serotype H-14] and Bacillus sphaericus have demanstrated marked pathogenicity for mosquito larvae, and currently are undergoing intensive study and developments as microbial control agents. Insect-pathogenic spore-forming bacilli have several advantages as microbial control agents; most relatively easy to culture on artificial media or under commercial fermentation conditions; all bear a resistance by the host insect to these microorganisms appears to occur more slowly than to chemical insecticides (Davidson, 1981).

The toxins produced by these bacterial agents are particulate in nature having low solubility in water and on ingestion act as stomach posions (*Matsumura*, 1975). Without ingestion, bacterial agents are

not toxic to mosquito larvae. The activity of these larvicides depends on many physical and biological factors.

The physical factors that have the greatest impact on microbial insecticides in the aquatic environment are; pH, sunlight [especially ultraviolet], heat and chemicals in the water. The most important biotic factor influencing the efficacy of bacilli larvicides is the characteristic of the organisms or the host.

The present work deals with the effect of <u>B</u>. <u>sphaericus</u> on larvae of two mosquito species, <u>C</u>. <u>pipiens</u> and <u>A</u>. <u>caspius</u>. It aims also to study the effect of a physical factor (water temperature) which have an effect on the activity of bacterial larvicide on mosquito larvae.