سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

ALEXANDRIA UNIVERSITY FACULTY OF ENGINEERING

Performance Improvement of Self Excited Induction Generator for Renewable Energy System

A thesis submitted to the

Department of Electrical Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

by

Eman Saad Hamed El-Hawatt

supervised by

Prof. Dr. Mohamed Shafik Abou El-Ela Prof. Dr. Nagi Sorial

1994

12478

We certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Master of Science.

Exam Comittee:

1. Prof. Dr Adel Lotfy Mohamadain.

Al Mohaly

Department of Electrical Engineering.

Alexandria University.

2. Prof. Dr. Nagy Sorial.

Department of Electrical Engineering.

Alexandria University.

3. Prof. Dr. Mohamed Mostafa El-Shanawany. 26 Shungany.

Department of Electrical Engineering.

Elmonofia University.

4. Prof Dr. Mohamed Shafik.

Department of Electrical Engineering.

Alexandria University.

ABSTRACT

During the last recent years, a large number of research projects focused on the use and development of new systems utilization alternative sources of energy.

The work covered the development of sources and increase in their productivity, reliability, efficiency and economy. The research project presented aims at improving the performance of self excited induction generators (S.E.I.G.). This type of generators has been known for a long time but it limited in its application, although it offers advantages in other aspects.

performance research focuses on improving the characteristics of S.E.I.G by introducing control on its exciting capacitors when the three phase induction generator is used to supply single phase load, i.e at an unbalanced operation. Obtained results showed substantial in voltage regulation and stability improvement introducing a feed back control loop with excitation current using SCR devices. Laboratory investigation were also performed to show the practicality of the solution performed to show the validity of the proposed techniques. The research outlines the main characteristics of self excitation, and the theory behind it. It also surveys recent researches topics relevant to that subject. A brief description of the theory of self excitation is given with a complete evaluation for the performance obtained and its limitations.

Acknowledgment

The author wishes to express her sincere gratitude to Prof. Dr. Mohamed Shafik Abou El-Ela for his inspiration, encouragement, valuable suggestions and patience throughout the course of this research, and Prof Dr. Nagi Sorial for his indispinsable help and interest during this work.

TABLE OF CONTENTS

	Pa	age
Abstract		i
Contents		ii
Chapter I	INTRODUCTION	
1.1	General Introduction	1
1.2	Historical review	3
	1.2.1 Small and medium wind energy	
	system (S.W.E.S)	8
	1.2.1.1 Electricity generation	8
	1.2.1.1.1 Stand alone D.C. system .	8
	1.2.1.1.2 Stand alone 50 Hz system	10
	1.2.1.2 Mini hydro electric plant	14
	1.2.1.2.1 Pneumatic conversion for law	
	hydro electric power	14
	1.2.1.2.2 Pneumatic hydro	
	electric - duct system	17
1.3	Thesis objectives	19
1.4	Mhogig organization	20

Chapter II THEORY AND CHARACTERISTICS OF CAPACITIVE SELF EXCITING INDUCTION GENERATOR

2.1	Introduction	22
2.2	Theory of C.S.E.I.G	22
	2.2.1 The induction machine as a motor operation	23
	2.2.2 The induction machine as a generator	25
2.3	Parameter which affect the generator	
	output voltage	27
	2.3.1 Effect of terminal capacitor	28
	2.3.2 Effect of machine parameter	31
	2.3.2.1. Stator resistance R _s	31
	2.3.2.2. Leakage reactance X _s , X _r	31
	2.3.2.3. Magnetizing reactance X_m	33
	2.3.2.4. Rotor resistance R	33
	2.3.3 Effect of speed	33
2.4	Balance operation of the self excited induction	
	generator	37
2.5	Unbalanced operation of C.S.E.I.G	38
2.6	Load characteristic of induction generator	47
	2.6.1 No-load characteristic	47
	2.6.2 Load characteristic	47

			iv
		p	age
2.7 Self excited single phase induction generator	:	•	49
2.7.1 Single winding stator			51
2.7.2 Two winding induction generator			51
2.7.3 Final working scheme	•		53
2.8 Effect of system parameters	•		55
2.8.1 Effect of power factor			55
2.8.2 Effect of excitation capacitor			55
2.8.3 Effect of auxiliary winding parameter		•	55
2.8.3.1 Effect of winding resistance		•	55
2.8.3.2 Effect of leakage reactance			57
2.8.4 Effect of rotor parameter		•	57
2.8.4.1 Effect of rotor resistance .			57
2.8.4.2 Effect of rotor leakage react	an	ce	57
2.8.5 Effect of series capacitor			57
2.9 Load characteristic curves			59
2.10 Summary and comments			59
Chapter III VOLTAGE REGULATION OF C.S.E.I.G			
3.1 Introduction	•	•	62
3.2 Capacitor evaluation for C.S.E.I.G			62
3.2.1 Calculation of slip		•	63
3.2.2 Calculation of excitation capacitor .			67
3.2.3 Computer program to calculate slip and			

			page
	3.2.4	Frequency calculation in	
		unbalance operation	. 72
	3.2.5	Computation technique	. 84
3.3	Methods	s of voltage regulation	. 89
	3.3.1	Thyristor controlled inductor	. 93
	3.3.2	Inductivity loaded AC/DC converter	. 93
	3.3.3	Switched capacitors	. 93
	3.3.4	D.C. power control	. 96
	3.3.5	Comparison between voltage	
		regulator methods	. 96
3.4	Design	of capacitance variation regulation	. 99
	3.4.1	Manual control circuit diagram	. 99
	3.4.2	Automatic control circuit diagram	. 109
		·	
Chapt	er IV	PRACTICAL RESULTS	
4.1	Introdu	uction	112
		cal results	
		Relation between slip and load	
		at balance operation	. 112
	4.2.2	Relation between frequency load	
		resistance at unbalance operation	. 114
4.3	Practio	cal result	
-		Open circuit characteristics	

í

,

	vi
	page
4.3.2 Load characteristic	119
4.3.2.1 Balance load characteristics	121
4.3.2.2 Unbalance operation	124
4.3.2.3 Capacitance variation voltage	
regulation result	126
4.4 Waveform of the output voltage	129
Chapter V Conclusion	
5.1 Introduction	135
5.2 Achievments and conclusions	136
5.3 Future work	137
References	1.00
References	139
Appendix I	
Annandia II	
Appendix II	
Appendix III	
Appendix IV	
Appendix IV	• •
Appendix V	

} 7

LIST OF SYMBOLS

ОМ	Motoring vector.
OG	Generator vector.
V	Output terminal voltage.
•	Stator resistance.
R ₁ , R _s	
x_1 , (x_s)	Stator reactance.
R_2 , (R_r)	Rotor resistance.
x_1 , (x_r)	Rotor reactance.
$\mathbf{x}_{\mathtt{m}}$	Magnetizing reactance of induction machine.
×c	Excitation capacitor reactance.
$\mathbf{R}_{\mathtt{m}}$	Magnetizing resistance of induction machine.
$v_{o.c}$	Open circuit voltage.
V _m	Working voltage (operating voltage) when the
	machine act as a motor.
Im	Magnetizing current.
I _c	Capacitor current.
S	Slip of rotating machine
$\mathtt{L}_{\mathtt{S}}$	Stator inductance.
L _r	Rotor inductance.
L _{sr}	Magnetizing inductance.
W	Angular frequency.
r _D	Stator direct axis current.
IQ	Stator quadrature axis current.
Id	Rotor direct axis current.
Iq	Rotor quadrature axis current.
v_0	Stator quadrature axis generator voltage.
c	Excitation capacitance for 3-phase induction
	generator.