

Behavior of Reinforced concrete wide Beams Made of Recycled Aggregates

By

Marwan Saad Al Azzawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2019

Behavior of Reinforced Concrete Wide Beams Made of Recycled Aggregates

 $\mathbf{B}\mathbf{y}$

Marwan Saad ALAzzawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In
Structural Engineering

Under the Supervision of

Main Supervisor

Co-Supervisor

Prof. Dr. Hany Abdalla

Dr. Rasha T.S. Mabrouk

Professor, Structural Engineering Department

Faculty of Engineering Cairo University

Associate professor, Structural Engineering Department

Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2019

Behavior of Reinforced Concrete Wide Beams Made of Recycled Aggregates

By Marwan Saad Alazzawi

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

Master Of Science In Structural Engineering

Approved by the Examining Committee	
Prof. Dr. Hany Ahmed Abdalla Professor, Structural Engir	(Main Thesis Advisor) neering Department
Prof. Dr. Rasha T.S Mabrouk Associate professor, Structural Eng	(Advisor) ineering Department
Prof. Akram M. Torkey Professor of Concrete Structures, C	(Internal Examiner) Tairo Univetsity
Prof. Dr. Ghada Diaa ABDul-Ha Professor of Materials, Building Ro	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY 2019 **Engineer's Name:** Marwan Saad Alazzawi

Date of Birth: 21/2/1983 **Nationality:** Iraqi

E-mail: marwanalazzawi20132gmail.com

Phone: 009647712434401

Registration Date: 01/10/2016
Awarding Date:/2019
Degree: Master of Science
Department Structure Engineering
Supervisors:

Prof. Dr. Hany Ahmed Abdalla

Professor, Structural Engineering Department,

Dr. Rasha T.S. Mabrouk

(Associate professor, Structural Engineering Department)

Examiners:

Prof. Dr. Hany Ahmed Abdalla (Thesis Main Advisor)
Dr. Rasha T.S. Mabrouk (Co. Supervisor)
Prof. Dr. Akram M. Torkey (Internal Examiner)
Dr. Ghada (External Examiner)

Title of Thesis:

Behavior of Reinforced Concrete Wide Beams Made of Recycled Aggregates Key Words:

Wide-Shallow Beams, Beams Made of Recycled Aggregates, Longitudinal Reinforcement, Stirrups Reinforcement, Width to depth ratio.

Summary:

Wide beams are frequently used as transfer elements where the total structural depth. The objective of this research was to study the influence of the Recycled concrete Aggregate, volume ratio of longitudinal reinforcement, stirrups reinforcement and width - to- effective depth ratio on the shear behavior of reinforced concrete wide beams. Also the research aimed to check the adequacy of the procedures of the current codes provisions for design of reinforced concrete wide beams. An experimental program including 10 specimens was conducted. The reported results include the relation between load and deflection, strain in the longitudinal steel and strain in the stirrups.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Name: Marwan Saad ALAzzawi	Date:
Signature:	

ACKNOWLEDGMENTS

The Author is deeply grateful to Prof. **Dr.Hany Abdalla**, Professor of concrete structures faculty of Engineering, Cairo University, for his support, for his kind guidance, continuous encouragement, supervision of this study, his valuable suggestions, freely given during the work, and assistance throughout the preparation of this thesis. His devotion to the academic work was my inspiration to always thrive to the best. It was a great pleasure for me to have him as my main supervisor.

I am also grateful to **Dr. Rasha T.S. Mabrouk** Associate professor structural Engineering Department, Cairo University, for her valuable help and generous support provided during the preparation of this thesis. It was a great pleasure for me to have her as my co-supervisor. I also thank **Dr. Akram**, Professor of concrete structure Faculty of Engineering, Cairo University, for his valuable help and supporting during preparation of this thesis.

I would like also to thank all my colleagues who really gave me a support, Special thanks and admiration to my parents who gave me a continuous support to finish M.Sc. degree. Special thanks should also be given to my wife, my daughters Lara & Nadeen, for helping me in my research, and giving me a good effort in collecting data. Their efforts are very much appreciated.

ABSTRACT

One of the main reasons to use RCA in structural concrete is to make construction more "green" and environmentally friendly. The composite replacement of recycled concrete aggregate is 0%, 50% and 100%. A new source of raw material that local batching plants considered in this research that is the Recycled.

Most research to date has consisted only of the evaluation of the material strength and durability of recycled aggregate concrete (RCA) mixtures, while only a limited number of studies have implemented full-scale testing of specimens constructed with RCA to determine its potential use in the industry. For this research, a laboratory-testing program was developed to investigate the Effect of shear force on wide beams by using recycled-aggregate

. The experimental program consisted of ten tests performed on full-scale RC beams. The principal parameters investigated were: (1) Using of different percentages of recycled aggregates, (2) Changing the ratio of width over depth from 1.75 to 2.25, effect of increasing longitudinal reinforcement, and increasing stirrups reinforcement. The cracking, yielding, and ultimate capacities of the beams were compared with existing design code provisions.

A numerical method was studied by finite element program (ANSYS v.10) to identify the effect of all parameters on the shear strength of wide beams by using recycled-aggregate.

TABLE OF CONTENTS

DISCLAIMER	j
ACKNOWLEDGMENTS	ii
ABSTRACT	ii
TABLE OF CONTENTS	iv
List of Figures	viii
List of Tables	xiii
Chapter 1 :INTRODUCTION	1
1.1 Introduction	
1.2 Objective of this Work	
1.3 Scope of Research	
1.4 Organization of the Thesis	
Chapter 2 :LITERATURE REVIEW	
2.1 Introduction	
2.2 Shear Behavior of Reinforced Concrete Beams	
2.3 Mechanisms of Shear Transfer in Reinforced Concrete	
2.3.1Shear Failure Modes	
2.3.1.1 Beams without Shear Reinforcement	
2.3.1.2 Beams with Shear Reinforcement	5
2.4 Parameters Affecting Shear Capacity of Wide Beams	6
2.4.1 Longitudinal Reinforcement Ratio	
2.4.2 Web Reinforcement.	7
2.4.3 Concrete Compressive Strength	7
2.4.4 Cross Section Size and Geometry	7
2.4.5 Shear span to depth ratio	8
2.4.6 Member Width to Depth Ratio (bwa)	8
2.5 Codes Review for Shear of Shallow Wide Beams	9
2.5.1 Egyptian Code of Practice (ECP 203-2007) (11)	9
2.5.2 American Concrete Institute (ACI 318-14)	10
2.5.3 Euro Code (EN 1992) [12]	
2.5.3.1 Members Not Requiring Shear Reinforcement	
2.5.3.2Members requiring Shear Reinforcement:	
2.5.4 AASHTO LRFD 2005[13]	
2.6 Recycled Concrete Aggregate	
2.6.1 Introduction of RCA	
2.6.2 General	
2.6.3 Characteristics of Recycled Concrete Aggregate	
2.6.4 Mix Design Procedure Using RCA	12
2.6.5 Equipment Used in Recycling Concrete	
2.7 Strength of Reinforced Concrete with Recycled Coarse Agg	-
2.7.1 Compressive Strength of Concrete with RCA	
2.7.2 Tensile Strength of Concrete with RCA	15

2.7.3 Flexural Strength of Concrete with RCA	15
2.7.4 Advantages of Recycled Concrete Aggregate	15
2.7.5 Process of Making Recycled Concrete Aggregate	
2.7.6 Production Sequence of RCA	
2.8 Applications of RCA	
2.9 Previous research about RCA	
2.10 Behavior of RCA wide beams	
2.11 Conclusion	
Chapter 3 :EXPERIMENTAL PROGRAM	
3.1 Introduction	
3.2 Materials	
3.2.1 Concrete	
3.2.2 Recycled Aggregates	
3.2.3 Cement	
3.2.4 Water	
3.2.5 Addicrete (BVF)	
3.3 Concrete Mix Design	
3.4 Properties of Concrete	
3.4.1 Reinforcement	
3.5 Experimental Program Layout	
3.5.1 General	
3.5.2 Parametric Study	
3.6 Beams Fabrication	
3.6.1 Formwork Preparation	
3.6.2 Concrete Mixing and Casting	
3.7 Test Specimens Details	
3.7.1 Group 1	
3.7.2 Group2	
3.8 Test Set-up and Instrumentation	
3.8.1 Measuring Devices	
3.8.1.1 Concrete Deflection Devices	
3.8.1.2 Steel Strain Devices	
3.9 Setup configuration	
Chapter 4 :PARAMETRIC STUDY	35
4.1 Introduction	
4.2 Results of Group- 1	
4.2.1 Mode of Failure and Cracking Patterns	36
4.2.1.1 Beams (B350N58) and (B350F58)	
4.2.1.2 Beam (B350F78) with 50% Recycled Concrete Aggregation	
4.2.1.3 Beam (B350H58) with 100% Recycled Concrete Aggreg	
4.2.1.4Beam (B350H78) with 100% Recycled Concrete Aggreg	ates 37
4.2.2 The Relationship between Load and Deflection	
4.2.2.1 Beam (B350N58) with 0% Recycled Concrete Aggregate	
4.2.2.2 Beam (B350F58) with 50% Recycled Concrete Aggrega	
4.2.2.3 Beam (B350F78) with 50% Recycled Concrete Aggrega	
4.2.2.4Beam (B350H58) with 100% Recycled Concrete Aggreg	

4.2.2.5Beam (B350H78) with 100% Recycled Concrete Aggregates 40)
4.2.3 Strains in Longitudinal Reinforcement Bars43	,
4.2.4 Strain in stirrups45	;
4.3 Results of Group 246	,
4.3.1 Mode of Failure and Cracking Patterns47	1
4.3.1.1 Beam (B450N78) without Recycled Concrete Aggregates47	
4.3.1.2 Beam (B450F78) with 50% Recycled Concrete Aggregates47	
4.3.1. Beam (B450F710) with 50 % Recycled Concrete Aggregates48	
4.3.1.4Beam (B450H78) with 100% Recycled Concrete Aggregates 48	
4.3.1.5 Beam (B450H710) with 100% Recycled Concrete Aggregates	
4.3.2 The Relationship between Load and Deflection50	
4.3.2.1 Beam (B450N78) with no Recycled Concrete Aggregates50	
4.3.2.2 Beam (B450F78) with 50% Recycled Concrete Aggregates50	
4.3.2.3 Beam (B450F710) with 50% Recycled Concrete Aggregates 51	
4.3.2.4 Beam (B450H78) with 100% Recycled Concrete Aggregates 51	
4.3.2.5 Beam (B10) with 100% Recycled Concrete Aggregates51	
4.3.3 Strains in Longitudinal Reinforcement Bars53	
4.3.4 Strain in stirrups56	
4.4 Analysis of Results58	
4.4.1 Effect of RCA on the Load-Deflection Relationship	
4.4.2 Effect of longitudinal reinforcement ratio61	
4.4.3 Effect of shear reinforcement ratio	
4.4.4 Effect of Beam width to depth ratio63	
Chapter 5 :FINITE ELEMENT ANALYSIS AND DISCUSSION65	
5.1 Introduction	
5.2 Finite Element Method	
5.2 Three-Dimensional Modeling66	
5.4 ANSYS Program66	
5.4.1 Solid 65 element	
5.4.1.1 Material properties of solid65 element as needed in the program 5.4.1.2 Solid 65 assumptions and restrictions:	
•	
5.4.2 Link 180 element description	
5.4.2.1 Link 8 or Link 180 input summary67	
5.4.2.2 Link 8 assumptions	
5.5 Material Modeling68	
5.5.1 Material Modeling for Recycled Aggregate Concrete69	
5.5.1.1 Full stress –strain curve69	
5.5.1.2 Finite element modeling of Wide beams70	
5.6 Estimation of beam behavior71	
5.6.1 Cracking pattern simulation for Group 171	
5.6.2 Cracking pattern simulation for Group 277	
5.7 Load-deflection predictions82	
5.7.1 Load-deflection predictions for Group- 182	
5.7.2 Load-deflection predictions for Group285	
5.8Conclusion	
5.9Comparison between Test Results and Code Prediction for Shear Strength	90

Chapter 6	:SUMMARY AND CONCLUSIONS	92
-	Introduction	
	Conclusion	
	Recommendation for future work	
REFEREN	ICES	94

List of Figures

Figure 2. 1: Internal Forces in a Cracked Beam with Stirrups5
Figure 2. 2: Types of Inclined Cracks
Figure 2. 3: Shear Failure Modes (ASCE-ACT 426) [3]6
Figure 2. 4: Shear Strength vs. a/d (Kani 1979 [9])
Figure 2. 5: Effect of Beam Width on Shear Capacity by Hsiung and Frantz (1985)9
Figure 2. 6: Asphalt recycle grinding machine
Figure 2. 7: Grinding machine for concrete crusher
Figure 2. 8: Aggregate crusher14
Figure 2. 9: Concrete recycling robot
Figure 2. 10: Flowchart of recycling process
Figure 2. 11: Uses of RAC in different parts of world [15]
Figure 2. 12 (a) and (b): Front view of specimens (unit: mm)
Figure 2. 13: Waste concrete for recycling: concrete cubes and precast column
Figure 2. 14: Recycled material after (a) primary and (b) secondary crushing
Figure 2. 15: Particle size distribution of aggregates used
Figure 2. 16: Demolished concrete at site. (21)
Figure 2. 17: Stress- stain curves for cylindrical specimens with different percentages of recycled aggregate content
Figure 3. 1: Waste material for recycle concrete
Figure 3. 2: Cement used in the concrete mix
Figure 3. 3: Addicrete (BVF)24
Figure 3. 4: The Concrete Testing Cubes Figure 3. 5: The Concrete Testing
Figure 3. 6: Preparing Formwork for casting 2 beams with 50 % of recycled aggregate 29
Figure 3. 7: Specimens Reinforcement Setup with Stirrups
Figure 3. 8: Pouring of Concrete
Figure 3. 9: leveling specimen surface
Figure 3. 10:Details of B350N58, B350F58, and B350H58

Figure 3. 11:Details of B350F78, and B350H78 with increasing of longitudinal reinforcem	ient
	.32
Figure 3. 12: Details of B450N78, B450F78, and B450H78	.32
Figure 3. 13: Details of B450F710, and B450H710 with increasing of Stirrups for 2 beams.	.33
Figure 3. 14: Vertical LVDTs Deflection Measurement	.33
Figure 3. 15: Electrical Strain Gauges Data	.34
Figure 3. 16: Details of Test setup configuration for the shear tests	.34
Figure 4. 1: show the tensile stress-strain for three different materials	.35
Figure 4. 2a: Cracking Patterns of B350N58	.37
Figure 4. 3: Cracking Patterns of B350F58	.38
Figure 4. 4: Cracking Patterns of B350F78	.38
Figure 4. 5: Cracking Patterns of B350H58	.38
Figure 4. 6: Cracking Patterns of B350H78	.39
Figure 4. 7: Load-Deflection Relationship of B350N58	. 40
Figure 4. 8: Load-Deflection Relationship of B350F58	.41
Figure 4. 9: Load-Deflection Relationship of B350F78	.41
Figure 4. 10: Load-Deflection Relationship of B350H58	. 42
Figure 4. 11: Load-Deflection Relationship of B350H78	. 42
Figure 4. 12: Strain of the Longitudinal Bars for Group1(B350N58).	. 43
Figure 4. 13: Strain of the Longitudinal Bars for Group-1(B350F58)	. 43
Figure 4. 14: Strain of the Longitudinal Bars for Group1(B350F78).	. 44
Figure 4. 15: Strain of the Longitudinal Bars for Group1(B350H58).	. 44
Figure 4. 16: Strain of the Longitudinal Bars for Group1(B350H78).	. 45
Figure 4. 17: Strain of Stirrups at d/2 for Group1(B350N58)	. 45
Figure 4. 18: Strain of Stirrups at d/2 for Group1(B350F58).	.46

Figure 4. 19: Strain of Stirrups at d/2 for Group1(B350H78)	 46
Figure 4. 20: Cracking Patterns of B450N78	48
Figure 4. 21: Cracking Patterns of B450F78	 49
Figure 4. 22: Cracking Patterns of B450F710	 49
Figure 4. 23: Cracking Patterns of B450H78	 49
Figure 4. 24: Cracking Patterns of B450H710	 50
Figure 4. 25: Load-Deflection Relationship of B450N78	 51
Figure 4. 26: Load-Deflection Relationship of B450F78	 52
Figure 4. 27: Load-Deflection Relationship of B450F710	 52
Figure 4. 28: Load-Deflection Relationship of B450H78	 53
Figure 4. 29: Load-Deflection Relationship of B450H710	 53
Figure 4. 30: Strain of the Longitudinal Bars for Group2 (B450N78)	 54
Figure 4. 31: Strain of the Longitudinal Bars for Group2 (B450F78)	 54
Figure 4. 32: Strain of the Longitudinal Bars for Group2 (B450F710)	 55
Figure 4. 33: Strain of the Longitudinal Bars for Group2 (B450H78)	 55
Figure 4. 34: Strain of the Longitudinal Bars for Group-2 (B450H710).	 56
Figure 4. 35: Strain of Stirrups at d/2 for Group2(B450N78)	 56
Figure 4. 36: Strain of Stirrups at d/2 for Group2(B450F78).	 57
Figure 4. 37: Strain of Stirrups at d/2 for Group2 (B450H78)	 57
Figure 4. 38: Strain of Stirrups at d/2 for Group2(B450H710)	 58
Figure 4. 39: Load-Deflection for beams of Group 1	 59
Figure 4. 40: Shear Strength Capacity for Beams of Group 1	 59
Figure 4. 41: Load-Deflectionfor beams of Group 2	 60
Figure 4. 42: Shear Strength Capacity for Beams of Group 2	 60
Figure 4. 43: shows the effect of longitudinal reinforcement ratio on shear capacity	 61
Figure 4. 44: shows the effect of shear reinforcement ratio on shear capacity	 62

Figure 4. 45: shows the effect of width to depth ratio on shear capacity
Figure 5.1: Solid 65 Geometry
11gure 3.1. Solid 03 Geometry00
Figure 5. 2: Link8 geometry
Figure 5. 3: Elastic-Plastic Behavior of Concrete in Compression
Figure 5. 4: The whole normalized stress-strain curve of Recycled concrete Aggregate was
obtained from previous researches
Figure 5. 5: Average Stress-Strain behavior of concrete with various % replacement of RCA
Figure 5. 6: Standard Idealization the Concrete Elements
Figure 5. 7: Standard Idealization the Steel Elements
Figure 5. 8 (a): Deflection and Cracks shape for Beam (B350N58) by the FEA simulation 72
Figure 5. 8 (b): Strain at Mid Span for Beam (B350N58) by the FEA simulation72
Figure 5. 9 (a): Deflection and Cracks shape for Beam (B350F58) by the FEA simulation .73
Figure 5. 9 (b): Strain at Mid Span for Beam (B350F58) by the FEA simulation73
Figure 5. 10 (a): Deflection and Cracks shape for Beam (B350F78) by the FEA simulation 74
Figure 5. 10 (b): Strain at Mid Span for Beam (B350F78) by the FEA simulation74
Figure 5. 11 (a): Deflection and Cracks shape for Beam (B350H58) by the FEA simulation 75
Figure 5. 11 (b): Strain at Mid Span for Beam (B350H58) by the FEA simulation75
Figure 5. 12 (a): Deflection and Cracks shape for Beam (B350H78) by the FEA simulation 76
Figure 5. 12 (b): Strain at Mid Span for Beam (B350H78) by the FEA simulation76
Figure 5. 13 (a): Deflection and Cracks shape for Beam (B450N78) by the FEA simulation
Figure 5. 13 (b): Strain at Mid Span for Beam (B450N78) by the FEA simulation
Figure 5. 14 (a): Deflection and Cracks shape for Beam (B450F78) by the FEA simulation 78
Figure 5. 14 (b): Strain at Mid Span for Beam (B450F78) by the FEA simulation