

ASSESSMENT OF FACTORS AFFECTING COLLAPSIBILITY OF UNSATURATED SANDY SOIL

By

Mohamed Abubakr Nazmi Alassal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUPLIC WORKS

ASSESSMENT OF FACTORS AFFECTING COLLAPSIBILITY OF UNSATURATED SANDY SOIL

By

Mohamed Abubakr Nazmi Alassal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUPLIC WORKS

Under the Supervision of

Prof. Dr. Hussein Hamid Elmamlouk	Dr. Asmaa Moddather Hassan	
Professor of Geotechnical Engineering	Assistant Professor of Geotechnical	
and Foundations	Engineering and Foundations	
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University	

ASSESSMENT OF FACTORS AFFECTING COLLAPSIBILITY OF UNSATURATED SANDY SOIL

By

Mohamed Abubakr Nazmi Alassal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUPLIC WORKS

Approved by the Examining Committee	
Prof. Dr. Hussein Hamid Elmamlouk	Thesis Main Advisor
Prof. Dr. Manal A. Salem	Internal Examiner
Prof. Dr. Mohamed A. Abdel-Motaal (Faculty of Engineering – Ain Sh	External Examiner

Engineer's Name: Mohamed Abubakr Nazmi Alassal

Date of Birth: 24/4/1993 **Nationality:** Egyptian

E-mail: Eng_mohamedabubakr14@yahoo.com

Phone: 0109-7674953

Address: 15, 4th District, El-Shourok City, Cairo.

Registration Date: 01 /10/2016 **Awarding Date:**/2020 **Degree:** Master of Science

Department: Public Works

Supervisors:

Prof. Dr. Hussein Hamid Elmamlouk

Dr. Asmaa Moddather Hassan

Examiners:

Prof. Dr. Mohamed A. Abdel-Motaal (External examiner)

(Faculty of Engineering – Ain Shams University)

Prof. Dr. Manal A. Salem (Internal examiner)
Prof. Dr. Hussein Hamid Elmamlouk (Thesis Main Advisor)

Title of Thesis:

ASSESSMENT OF FACTORS AFFECTING COLLAPSIBILITY OF UNSATURATED SANDY SOIL

Kev Words:

Collapsible Soil, Unsaturated Soil, Matric Suction, Sandy Soil, Fines Effect.

Summary:

In this thesis, an experimental program is performed to illustrate the influence of different parameters on the collapsibility of ten sandy soils. Moreover, the collapse potential (CP) of these samples is determined using the single Oedometer Test. Then, the effect of related parameters including fine content, type of fines (silt/clay), initial water content, pre-wetting pressure, and wetting/drying process have been investigated. Also, the initial and pre-wetting matric suction values are measured using the filter paper method (ASTM D5298) to investigate its role on collapsibility. The soil water characteristic curves (SWCCs) could be generated, which can be used in numerical modeling of these types of soils. Scanning Electron Microscope (SEM) is conducted to illustrate the role of fine type in the collapsibility mechanism. Finally, different correlations suggested by literature and the Egyptian Code to determine the susceptibility of soil to collapse are studied.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Abubakr Nazmi Alassal	Date://	
Signature:		

Dedication

To the most loving and caring parents,

Abubakr Alassal and Samira Ibrahim

Thank you for giving me the support to be successful in life

Acknowledgments

The author is deeply thanks Prof. Dr. Hussein H. Elmamlouk, Professor of Soil Mechanics and Foundation Engineering at the Faculty of Engineering, Cairo University, for his fruitful discussions and beneficial comments.

Grateful acknowledgment and sincerest thanks to Dr. Asmaa Moddather Hassan, assistant professor of Soil Mechanics and Foundation Engineering at the Faculty of Engineering, Cairo University, for her continuous supervision, immense knowledge, adding essential information to this study, giving required motivation all times during this research study. Her guidance helped the author in all the time of the research and writing of this thesis. The author could not have imagined having a better advisor and mentor for the master study. The author believes that the most distinctive experience in his thesis is to work with her. Actually, words cannot describe how much the author thanked her for her massive efforts and her professionalism during this study.

A grateful appreciation to Prof. Dr. Mohamed El kholy, Professor of Soil Mechanics and Foundation Engineering at the Faculty of Engineering, Cairo University, Prof. Dr. Manal Salem, Professor of Soil Mechanics and Foundation Engineering at the Faculty of Engineering, Cairo University and Dr. Mohamed Kamal, assistant professor of Soil Mechanics and Foundation Engineering at the Faculty of Engineering, Cairo University, for their gentle advice and giving required support during this research.

Finally, another special thanks to my parents and my best friends, especially Abd Elmonem Mahmoud, Islam Mamdouh, Abd Elaziz Magdy and Ahmed Gomaa for their efforts and support in order to achieve this research objectives.

Table of Content

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGMENTS	III
TABLE OF CONTENT	IV
LIST OF TABLES	VI
LIST OF FIGURES	VII
ABSTRACT	XI
NOMENCLATURE	XII
CHAPTER 1: INTRODUCTION	1
1.1.BACKGROUND	1
1.2.PROBLEM STATEMENT	1
1.3.SCOPE AND OBJECTIVES OF THE STUDY	2
1.4.ORGANIZATION OF THE THESIS	2
CHAPTER 2 : LITERATURE REVIEW	4
2.1.INTRODUCTION	4
2.2.DEFINITION	4
2.3.NATURAL COLLAPSIBLE SOIL PROPERTIES	6
2.4.COLLAPSIBLE SOIL IN EGYPT	6
2.5.COLLAPSE POTENTIAL AND FACTORS AFFECTING SOIL	
COLLAPSIBILITY	7
2.5.1.THE EFFECT OF SOIL TYPE	9
2.5.2.THE EFFECT OF INITIAL DRY UNIT WEIGHT	14
2.5.3.THE EFFECT OF INITIAL WATER CONTENT	16
2.5.4.THE EFFECT OF WETTING PRESSURE	18
2.5.5.REGRESSION ANALYSIS	18
2.6.TRADITIONAL LABORATORY TESTS	21
2.6.1.SAMPLE PREPARATION	21
2.6.2.SINGLE OEDOMETER TEST	
2.6.3.DOUBLE OEDOMETER TEST	
2.7.FUNDAMENTAL OF UNSATURATED SOIL MECHANICS	
2.7.1.NET NORMAL STRESS	
2.7.2.SUCTION	
2.8.SUCTION MEASUREMENT	26

2.8.1.EMPIRICAL METHODS	26
2.8.2.FILTER PAPER METHOD	28
2.8.3.TENSIOMETER	
2.8.4.PRESSURE PLATE (AXIS TRANSITION TECHNIQUE)	
2.9.EFFECT OF SAMPLE DISTURBANCE ON COLLAPSE	30
CHAPTER 3 : METHODOLOGY	32
3.1.INTRODUCTION	32
3.2.RAW MATERIAL	32
3.3.SOIL CHARACTERIZATION TESTS	32
3.3.1.GRAIN SIZE ANALYSIS RESULTS	
3.3.2.ATTERBERG LIMIT RESULTS	
3.3.3.MAXIMUM AND MINIMUM VOID RATIO	
3.3.4.SUMMARY OF SOIL PROPERTIES	
3.3.5.SINGLE OEDOMETER TEST	
3.3.6.FILTER PAPER	
3.4.SAMPLE PREPARATION	
3.4.1.PREPARATION EQUIPMENT	
3.4.2.PREPARATION METHOD	
3.5.SEM PICTURE	
3.6.TESTING PROGRAM	
CHAPTER 4: TEST RESULTS AND ANALYSES	
4.1.INTRODUCTION	50
4.2.COLLAPSE POTENTIAL TEST TYPICAL RESULTS	50
4.3.MATRIC SUCTION TEST TYPICAL RESULTS	51
4.4.EFFECT OF SILT CONTENT	51
4.5.EFFECT OF FINES TYPE	56
4.6.EFFECT OF PRE-WETTING PRESSURE	61
4.7.EFFECT OF INITIAL WATER CONTENT	69
4.8.SOIL MOISTURE CHARACTERISTICS CURVE (SWCC)	82
4.9.MATRIC SUCTION VERSUS COLLAPSE POTENTIAL	89
4.10.EVALUATION OF CORRELATIONS FROM LITERATURE	92
4.10.1.CORRELATIONS BETWEEN SOIL COLLAPSIBILITY AND DRY U	
WEIGHT	
4.10.2.CORRELATION BETWEEN SOIL COLLAPSIBILITY AND DEGRE	
SATURATION	
4.11.STUDY THE CORRELATIONS REPORTED IN EGYPTIAN CODE	
CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS	95
5.1.CONCLUSIONS FROM EXPERIMENTAL WORK	
5.2.RECOMMENDATIONS FOR FUTURE STUDY	96
REFERENCES	97

List of Tables

Table 2.1: Properties of Collapsible Soils in Albuquerque (Lommler and Bandini,	
2015)	6
Table 2.2: Comparison between Egyptian Collapsible Soil and Collapsible Soil in	
Some Other Countries (Sakr, et al. 2008)	8
Table 2.3: Properties of Tested soils which was used by Basma and Tuncer, (1992)	10
Table 2.4: Details of Performed Test Series (Basma and Tuncer, 1992)	11
Table 2.5: Properties of Tested Soils Used in Das and Thyagarj (2016)	11
Table 2.6: Physical Properties of Soils Used in Ayadat and Hanna (2007)	12
Table 2.7: Direct Shear Test Results of Unsaturated SM (Douthitt et al. 1998)	31
Table 3.1: Summary for Used Mixtures Characteristics ($D_r \approx 35\%$)	39
Table 3.2: Classification of Collapse Index (ASTM D5333-92)	
Table 3.3: Summary for Conducted Tests ($D_r \approx 35\%$)	48
Table 4.1: (eo), (es) and (CP) Values for Mixtures with various Silt Content ($D_r \approx$	
35%, wi = $5%$ and Pw to 100 kPa)	54
Table 4.2: (e _o) and (e _s) for Mixtures with various Fines Type ($D_r \approx 35\%$, $w_i = 5\%$) .	.59
Table 4.3: Summary for Matric Suction Directly before Wetting, at Various Pw	
(S60-M30-C10, Dr \approx 35% and wi = 5%)	66
Table 4.4: Summary of Test Results for Samples with various Initial Water	
Content (wi) (Sand Content = 60%, $D_r \approx 35\%$ and $Pw = 100$ kPa)	77
Table 4.5: Summary of Parameters used to predict SWCC	. 90
Table 4.6: Degree of Collapse based on Initial Matric Suction Values	.91

List of Figures

Figure 2.1: Loaded Collapsible Soil Structure (a) Before Inundation and (b) After
Inundation (Jotisankasa, 2005)5
Figure 2.2: Pin Holes in Collapsible Soil Visible to (a) Naked Eye, (b) 60X
Microphotograph, (c) 30X SEM Image, (d) 300X SEM Image (Lommler and
Bandini,2015)5
Figure 2.3: Damages in 2-Storey Building in Al-Gharbaneyat due to Building on
Collapsible Soil (Sakr, et al. 2008)8
Figure 2.4: Grain Size Distributions for soils Used in Ayadat and Hanna, (2007)
Figure 2.5: Effect of (Sand-Clay) on CP at Different Wetting Pressure (Pw) (Basma and
Tuncer, 1992)
Figure 2.6: Effect of Cu on CP of Soil Different Wetting Pressure (Pw) (Basma and
Tuncer, 1992)13
Figure 2.7: Influence of Clay Content on Collapsibility of Soil (Lawton et al., 1992)14
Figure 2.8: Maximum collapse with respect to percent of clay $(R2 = 0.82)$ (modified from
maximum collapse to CP, Alwail, 1990)15
Figure 2.9: Maximum collapse with respect to percent of fines (modified from maximum
collapse to CP, Steadman, 1987)15
Figure 2.10: Collapse Strain versus C _u (Ayadat and Hanna, 2007)
Figure 2.11: Effect of Initial Unit Weight on CP (Basma and Tuncer, 1992)17
Figure 2.12: Variation of Collapse Potential of Soil with Initial Dry unit weight for
Sample Compacted at w _i of 9% (Das and Thyagarj, 2016)
Figure 2.13: Effect of Initial Water Content on Collapsibility (Basma and Tuncer, 1992). 18
Figure 2.15: Variation of Collapse Potential with Initial Water Content at Different
Surcharge Pressure, бі, (Phanikumar et al. 2015) 20
Figure 2.16: Effect of Wetting Pressure on Collapse Potential for Different Soil Types
(Basma and Tuncer, 1992)
Figure 2.17: Double Oedometer Test Results: (a) Normally Consolidated Soil; (b) Over
consolidated Soil (Das, 1995).
Figure 2.18: Typical SWCC (Houston, 2014)
Figure 2.19: SWCC Estimates (Zapata et al. 2000)
Figure 2.20: Soil Suction as a Function of Degree of Saturation and Fines Content
(Walsh et al., 1993)27
Figure 2.21: SEM Image of Whatman No. 42 Filter Paper (Kim et al., 2016)
Figure 2.22: Conventional Tensiometer from Soil-Moisture Equipment Corporation
(Fredlund and Rahardgo, 1993)29
Figure 3.1: Grain Size Distribution Curves for Raw Material
Figure 3.2: Grain Size Distribution Curves for Group "A" of Prepared Mixtures34
Figure 3.3: Grain Size Distribution Curves for Group "B" of Prepared Mixtures
Figure 3.4: Summary for USCS of Fines Using Plasticity Chart
Figure 3.5: Wetting Calibration Curve of Suction-Filter Paper Moisture Content for
Whatman No.42 Filter Paper (Kim et al., 2016)

Figure 3.6: Matric Suction Determination Procedures; (a) Preparing Two Identical	
Samples, (b) Placing Filter Paper on Top of First Sample, (c) Placing Second	
Identical on the Filter Paper, (d) Placing Flexible Tap, (e) Covering Sample	
with Foil Paper and (d) Placing Sample in Desiccator	41
Figure 3.7: High Accuracy Balance	
Figure 3.8: Single Oedometer Test Results for Sample with Initial Water Content versus	
Same Sample without Water Content for \$60-M30-C10	
Figure 3.9: Preparation Mould (a) Separated Parts and the Ring, and (b) Assembly of the	
Preparation Mould	44
1	
Figure 3.10: Dimensions of the Preparation Mould (a)Plan View, and (b)Elevation View	43
Figure 3.11: Preparation Compactor (a) Compactor Weight, (b) Whole Preparation	15
Compactor	
Figure 3.12: 2D Drawing for Preparation Compactor	
Figure 3.13: Preparation Procedures; (a) Preparing the soil Mixture, (b) Adding Distilled	
Water, (c) Placing Mixture into the Preparation Mould and (d) Removing the	
Preparation Mould	
Figure 3.14: SEM Images Device	
Figure 3.15: Flow Chart for Testing Program ($D_r \approx 35\%$)	. 49
Figure 4.1: Typical Collapse Potential Measurement Results Using Single Oedometer	
Test	. 51
Figure 4.2: Relationship between ($\Delta e/1+e_0$) and Plasticity Index; Before Wetting, at	
Wetting and Total Value	. 52
Figure 4.3: Single Oedometer Test Results for Various Silt Content Samples	52
Figure 4.4: Collapse Potential versus Silt Content ($R^2 = 0.99$)	. 53
Figure 4.5: Relationship between Initial Void Ratio (e _o), Skeleton Void Ratio (e _s) and	
Collapse Potential (CP), at $D_r \approx 35\%$ and $w_i = 5\%$. 54
Figure 4.6: Relationship between Change in Void Ratio before Wetting and Silt Content.	55
Figure 4.7: Collapse Potential (CP) versus Initial Matric Suction for Samples with	
Different Silt Content ($R^2 = 0.91$)	56
Figure 4.8: Single Oedometer Test Results for Varied Fines Types Samples	
Figure 4.9: Collapse Potential (CP) versus Plasticity Index (P.I) ($R^2 = 0.99$)	
Figure 4.10: Collapse Potential (CP) versus Initial Matric Suction for Samples with	
Different Fines Type ($R^2 = 0.94$)	59
Figure 4.11: SEM Pictures for Three Soil Mixtures to Illustrate Clay Balls; (a) S60-M30-	
C10, (b) S60-M20-C20 Clay and (c) S60-M10-C30	
Figure 4.12: SEM Pictures for Three Soil Mixtures to Illustrate Voids Distribution	
(Clouded Areas are referred to Coarse Soil); (a) S60-M30-C10, (b) S60-	
	<i>C</i> 1
M20-C20 Clay and (c) S60-M10-C30	01
Figure 4.13: Single Oedometer Test Results at Different Pre-wetting Pressure (P _w) for	()
S60-M30-C10	02
Figure 4.14: Single Oedometer Test Results at Different Pre-wetting Pressure (P _w) for	
\$60-M20-C20	. 63
Figure 4.15: Single Oedometer Test Results at Different Pre-wetting Pressure (P _w) for	
S60-M10-C30	. 63
Figure 4.16: Single Odometer Test Results at Different Pre-wetting Pressure (P _w) for	
S60-M02-C38	
Figure A 17: Collapse Potential (CP) versus Pre-wetting Pressures (P)	6/

Figure 4.18: Collapse Potential (CP) versus Plasticity Index (P.I) at Different Pre-wetti	ng
Pressures (P _w)	65
Figure 4.19: Collapse Potential (CP) versus Matric Suction Directly before Wetting for S60-M30-C10 ($\mathbb{R}^2 = 0.99$)	66
Figure 4.20: Relationship between Net Normal Stress (Pw), Matric Suction and Collaps	se
Potential (CP) (S60-M30-C10, $D_r \approx 35\%$ and $w_i = 5\%$)	
Figure 4.21: General Relationship between Collapse Potential (CP) and Pre-wetting	
Pressure (P _w) at $D_r \approx 35\%$ (R ² = 0.71)	68
Figure 4.22: General Relationship between Collapse Potential (CP), Pre-wetting Pressu	
(P_w) and initial Matric Suction at $D_r \approx 35\%$ ($R^2 = 0.98$)	
Figure 4.23: Single Oedometer Test Results at Different Initial Water Content (w _i),	
Wetting Process, for S60-M30-C10	70
Figure 4.24: Single Oedometer Test Results at Different Initial Water Content (w _i),	
Wetting Process, for S60-M20-C20	70
Figure 4.25: Single Oedometer Test Results at Different Initial Water Content (w _i),	
Wetting Process, for S60-M10-C30	71
Figure 4.26: Single Oedometer Test Results at Different Initial Water Content (w _i),	
Wetting Process, for S60-M02-C38	71
Figure 4.27: Collapse Potential (CP) versus Initial Water Content (w _i)	72
Figure 4.28: Effect of Initial Water Content (w _i) on Soil Initial Matric Suction and	
Collapsibility of Soil	73
Figure 4.29: Relationship between $(\Delta e/1+e_0)$ and Initial Water Content (w_i) ; Before	
Wetting, at Wetting and Total Value for S60-M30-C10	73
Figure 4.30: Relationship between ($\Delta e/1 + e_o$) and Initial Water Content (w_i); Before	
ε, ε	74
Figure 4.31: Relationship between ($\Delta e/1 + e_0$) and Initial Water Content (w_i); Before	
Wetting, at Wetting and Total Value for S60-M10-C30	74
Figure 4.32: Relationship between ($\Delta e/1 + e_0$) and Initial Water Content (w_i); Before	
Wetting, at Wetting and Total Value for S60-M02-C38	75
Figure 4.33: Collapse Potential (CP) versus Plasticity Index (P.I) at Different Initial	
Water Content (w _i)	76
Figure 4.34: Single Oedometer Test Results at Different Initial Water Content (w _i),	
Drying Process, for S60-M30-C10	77
Figure 4.35: Collapse Potential (CP) versus Initial Water Content (w _i), Drying versus	70
Wetting Process for S60-M30-C10	
Figure 4.36: SWCC for S60-M30-C10 ($D_r \approx 35\%$)	/8
Figure 4.37: General Relationship between Collapse Potential (CP) and Initial Water Content (w_i) ($R^2 = 0.57$)	70
Figure 4.38: Collapse Potential (CP) versus Initial Degree of Saturation (S)	
Figure 4.39: General Relationship between Collapse Potential and Initial Degree of	60
Saturation (S) ($R^2 = 0.67$)	Ω1
Figure 4.40: General Relationship between Collapse Potential (CP) and Initial Matric	01
Suction at $D_r \approx 35\%$ ($R^2 = 0.91$)	21
Figure 4.41: Typical SWCC (Yang et al., 2004)	
Figure 4.42: SWCC using Brooks and Corey (1964) Equation	
Figure 4.43: SWCC using Van Genuchten (1980) Equation	
Figure 4.44: SWCC using Fredlund and Xing (1994) Equation	

Figure 4.45: SWCC for S60-M30-C10 using Three Methods	87
Figure 4.46: SWCC for S60-M20-C20 using Three Methods	88
Figure 4.47: SWCC for S60-M10-C30 using Three Methods	88
Figure 4.48: SWCC for S60-M02-C38 using Three Methods	89
Figure 4.49: Collapse Potential (CP) versus Initial Matric Suction at $P_w = 100$ kPa, $D_r \approx$	
$35\% (R^2 = 0.82) \dots$	90
Figure 4.50: Collapse Potential (CP) versus Dry Unit Weight at $P_w = 100$ kPa, $D_r \approx 35\%$	
	92
Figure 4.51: Collapse Potential (CP) versus Degree of Saturation (S) at $P_w = 100$ kPa and	
$D_r \approx 35\% \$	93

Abstract

During the construction of new urban areas in desert, new geotechnical challenges are encountered, among which is dealing with collapsible soil formations. Collapsible soils are metastable unsaturated soils that experience a radical rearrangement of particles and a significant reduction of volume upon wetting with or without loading.

In this study, an experimental program is conducted to investigate the influence of various parameters on the collapsibility of sandy soils. The collapsible soil is represented by an artificial soil mixture consisting of 50% to 90% of sand and 50% to 10% of fines. These soil mixtures are classified as SM, SC, and SP-SC according to unified soil classification system (USCS). All the soil specimens are prepared at 35% relative density (D_r), approximately. In addition, the procedure of preparing an artificial collapsible soil specimen in laboratory is explained in details. Afterwards, the collapse potential (CP) of ten sandy soils containing different types and percentages of fines is determined using the single Oedometer Test. Next, the effect of related parameters including fine content (10% - 50%), type of fines (silt/clay), initial water content (5% - 15%), initial degree of saturation (8% - 50%), pre-wetting pressure (0 – 200 kPa), and wetting/drying process have been studied. Furthermore, the initial and pre-wetting matric suction values are measured using the filter paper method (ASTM D5298).

Results show that matric suction and plasticity index of fines have a direct impact on the soil collapse potential (CP). In order to further examine the effect of fines, Scanning Electron Microscope (SEM) is used. It is verified that collapsibility of silty sand formations is better described in light of skeleton void ratio (e_s) whilst the collapsibility of clayey sand formations can be explained based on the formation of clay balls within the voids between sand particles. Furthermore, the matric suction measurements are used to generate soil water characteristic curves (SWCCs), which can be used in numerical modeling of collapsible soils using common application in geotechnical field, such as Abaqus and Plaxsis. The SWCCs are based on the work of Brooks and Corey (1964), Van Genuchten (1980) and Fredlund and Xing (1994). Moreover, the value of initial matric suction could be used as an indicator to assess collapsibility of soil and define the degree of problem that occurs due to soil collapsibility. Finally, different correlations suggested by literature and the Egyptian Code to determine the susceptibility of soil to collapse are studied and compared to current research work.