

Faculty of Science Chemistry Department

Synthesis of Some Terpolymer Nanocomposites and Their Evaluation as Additives for Some Petroleum Products

A Thesis Submitted for the Requirement of Ph.D. Degree

In (Chemistry)

Presented by

Abeer Abd El Galeel Abd El Mageed Hassan El-Segaey

Supervised by

Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry
Department of Chemistry
Faculty of Science, Ain Shams
University

Prof. Dr. Hussin Al-Shafey Ismail

Prof. of Applied Chemistry
Department of Petroleum Applications
Egyptian Petroleum Research
Institute

Dr. Amira El Sayed El-Tabey

Researcher at Department of Petroleum Applications
Egyptian Petroleum Research
Institute

2020

وقل اعملوا فسيركوالله عملوكم ورسوله والمؤمنون

سورة التوبة رقم الأية ١٠٥

ACKNOWLEDGMENT

To acknowledge my sincere gratitude to all those who taught me Chemistry and still do, words will be undeniably unjust.

The author is deeply indebted to *Prof. Dr. Ahmed Ismail Hashem*, Professor of Organic Chemistry, Faculty of Science, Ain Shams University, and for his endless effort and continuous supervision, which made the work fruitful, practical and acceptable.

The author wishes to express his deepest gratitude to *Prof. Dr. Hussin Al-Shafey Ismail*, Professor of Applied Chemistry, Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), for his kind and great care, for his continuous supervision, pleasant guidance encouragement and support and helping to facilitate the problems of this work.

Special thanks to *Dr. Enas Arafa Ismail*, Associate Professor, Process Development Department, Egyptian Petroleum Research Institute, for her advice, supervision, valuable discussions, for her valuable cooperation in performing the experimental work. I am grateful for the time and efforts taken by her to read and correct the written materials and for her gentle treatment. She has supported me in every possible way since the beginning of my research. Without her guidance and encouragement, my research would have never come out in the present form.

Special gratitude is devoted to *Dr. Amira El Sayed El Tabey*, Researcher, Petroleum Applications Department, EPRI, for her close and continuous supervision during all phases of this work, valuable discussions which made the work fruitful, practical and acceptable.

The author is grateful to *Prof. Dr. Yaser Mostafa*, Director of Egyptian Petroleum Research Institute (EPRI) for his kind and great care and support.

All my thanks for the soul of my father, may Allah have mercy on him and forgive him, for being the main reason for my motivation.

The author thanks all the family, my mother, my husband, my daughters and my Brethren on their hard work to support me.

Finally, the author thanks his colleagues for their continuous encouragement and support.

Aim of the Work

Name: Abeer Abd El Galeel Abd El Mageed Hassan El-Segaey

Title of thesis: Synthesis of Some Terpolymer Nanocomposites and Their Evaluation as Additives for Some Petroleum Products.

This study aims to:

- Preparation of novel terpolymers and terpolymer nanocomposites by reaction between prepared esters/amide with α -olefins and nanoclay (montmorillonite).
- Identification of the chemical structures of the prepared polymers by using several analyses; FT-IR, ¹HNMR, DLS, HR-TEM, EDX, TGA, POM and GPC.
- Evaluation of the prepared polymeric additives as pour point depressants and viscosity indices improvers for petroleum products.
- Determination of rheological properties of petroleum products at different temperatures 25, 45 and 65 °C.
- Determination of tribological properties of lube oil.

LIST of ABBREVIATIONS

Symbols	Description
¹ H-NMR	Proton nuclear magnetic resonance
сР	Centipoise
D	Shear-rate
DEME	Diethyl maleate ester
DEME-HDMA-HD	Poly(Diethyl Maleate) –ter-
(TP ₃)	(Hexadecyl Methacrylate Amide) (1-
	hexadecane)
DEME-HDMA-HD-	Nanohybrid of Poly(Diethyl
NMMT (PNC ₃)	Maleate) –ter- (Hexadecyl
	Methacrylate amide) (1- hexadecane)
DEME-HDMA-OD	Poly(Diethyl Maleate) –ter-
(TP ₄)	(Hexadecyl Methacrylate Amide) (1-
	octadecane)
DEME-HDMA-OD-	Nanohybrid of Poly(Diethyl
NMMT (PNC ₄)	Maleate) –ter- (Hexadecyl
	Methacrylate amide) (1- octadecane)
DEME-HDME-HD	Poly(Diethyl Maleate) –ter-
(TP ₁)	(Hexadecyl Methacrylate Ester) (1-
	hexadecane)
DEME-HDME-HD-	Nanohybrid of Poly(Diethyl
NMMT (PNC ₁)	Maleate) –ter- (Hexadecyl
	Methacrylate Ester) (1- hexadecane)
DEME-HDME-OD	Poly(Diethyl Maleate) –ter-
(TP ₂)	(Hexadecyl Methacrylate Ester) (1-
	octadecane)
DEME-HDME-OD-	Nanohybrid of Poly(Diethyl

NMMT (PNC ₂)	Maleate) –ter- (Hexadecyl
	Methacrylate Ester) (1- octadecane)
DLS	Dynamic Light Scattering
EVA	Eythylenvinylacetate
EVA	Ethylen-vinyl acetate
FTIR	The Fourier transform infrared
GPC	Gel Permeation Chromatography
HD	1- hexadecene
HDMA	Hexadecyl Methacrylate Amide
HDME	Hexadecyl Methacrylate Ester
HRTEM	High-resolution transmission
	electron microscopy
MMT	Montmorillonite
NMMT	Nanoclay Montmorillonite
NPPD	Nano-hybrid pour point depressant
NPs	Nanoparticles
OD	1-octadecene
OMS	Octadecyl methacrylate, maleic
	anhydride and styrene terpolymer
POM	Polarizing optical microscopy
PP	Pour point
PPD	Pour point depressant
ppm	Part per million
PTSA	p-Toluenesulfonic acid
T	Shear-stress
Тв	Yield stress
TGA	Thermogravimetric analysis
THF	Tetrahydrofuran

VI	Viscosity index
VII	Viscosity index improver
WAT	Wax Appearance Temperature
η	Apparent viscosity

CONTENTS

Acknowledgement		
Dedi	cation	
Abbı	eviations	
List	of contents	
List	of tables	
List	of figures	
Abst	ract	
Sum	mary	
Publ	ications	
Chap	oter 1. Introduction	1
1.1	Types of Crude Oils	1
1.2	Products from Crude Oil	3
1.3	Lubricating Base Oils	10
1.4	Paraffinic Waxes	14
1.5	Wax Remediation Techniques	29
1.6	Additives for Lubricating Base Oil	38
1.7	Characters of PPD	46
1.8	Mechanisms of pour point depression	47

1.9	Types of Polymeric Additives as PPD	51
1.10	Nano-hybrid PPD	59
Chapter 2. Experimentals		68
2.1	Materials	68
2.2	Synthesis of Esters and Amide	70
2.3	Synthesis of Terpolymers (Based Ester and Amide)	74
2.4	Synthesis of Terpolymer Nanocomposite (Nano-hybrid)	76
2.5	Characterization Analysis	82
2.6	Evaluation of the Synthesized Additives	84
Chapter 3. Results and Discussion		92
3.1	Characterization of the Synthesized Compounds	94
2.0	Evolvation of the Dunmand Dolymania Additives on the	
3.2	Evaluation of the Prepared Polymeric Additives on the Petroleum Products	111
3.3	•	150
	Petroleum Products	
3.3	Petroleum Products Viscoelastic properties of lubricating oil	150
3.3 3.4 3.5	Petroleum Products Viscoelastic properties of lubricating oil Tribological Properties of Lubricating Oil Polarized Optical Microscope (POM) of Lube Oil and diesel	150 152
3.3 3.4 3.5	Petroleum Products Viscoelastic properties of lubricating oil Tribological Properties of Lubricating Oil Polarized Optical Microscope (POM) of Lube Oil and diesel fuel Additives	150 152 156

Arabic Abstract

List of Tables

		Page
Table	Relationship between structure of hydrocarbons and	13
(1.1)	physical properties for base oils	
Table	The properties of the NMMT used	68
(2.1)		
Table	The physicochemical properties of the lubricating oil	69
(2.2)	used	
Table	The physicochemical properties of the diesel fuel used	70
(2.3)		
Table	Molecular weight distribution of pure terpolymers and	102
(3.1)	their nano-hybrids	
Table	Pour point temperatures of untreated lube oil (0 °C) and	114
(3.2)	treated with different concentrations of the prepared	
	additives	
Table	Pour point of pure diesel fuel (-3°C) treated diesel fuel	116
(3.3)	with different concentrations of additives	
Table	The parameters of apparent viscosity and yield stress	133
(3.4)	values of untreated and treated of lube oil by 10000 ppm	
	from additives at different temperatures	
Table	The parameters of apparent viscosity and yield stress	146
(3.5)	values of untreated and treated of diesel fuel by 10000	
	ppm from additives at different temperatures	
Table	Viscosity index data of untreated and treated lube oil at	148
(3.6)	10000 ppm	
Table	Viscosity index data of untreated and treated diesel fuel	149

(3.7)

List of Figures

		Page
Figure	Crystal Growth in 3-D	19
(1.1)		
Figure	Wax Crystal Classifications	21
(1.2)		
Figure	Schematic representation of wax crystal modifier co-	31
(1.3)	crystallization with wax crystals	
Figure	Pigging to remove the wax	33
(1.4)		
Figure	Polymer coil expansion	45
(1.5)		
Figure	Mechanism of wax crystal modification	50
(1.6)		
Figure	SEM images of wax crystals without EVA (a) and with	53
(1.7)	100 ppm EVA (b)	
Figure	Self-assembly of polyethylene-poly(ethylene-	54
(1.8)	propylene)	
Figure	A general structure of comb polymers	55
(1.9)		
Figure	Chemical structure of the terpolymer OMS	59
(1.10)		
Figure	Schematic diagram showing clay modification and	63
(1.11)	intercalation of polymer to form polymer	
	nanocomposites.	
Figure	Micrographic shapes waxy with POA-PPD and	67
(1.12)	POA/clay Nanocomposites PPD	

Figure	Schematic diagram of preparation of HDME and	72
(2.1)	DEME.	
Figure	Schematic diagram of preparation of HDMA	73
(2.2)		
Figure	Schematic diagram of preparation of DEME-HDME-	75
(2.3)	HD and DEME-HDME-OD.	
Figure	Schematic diagram of preparation of DEME-HDMA-	76
(2.4)	HD and DEME-HDMA-OD	
Figure	Schematic diagram of insitue preparation of DEME-	78
(2.5)	HDME-HD-NMMT and DEME-HDME-OD-NMMT.	
Figure	Schematic diagram of insitue preparation of DEME-	79
(2.6)	HDMA-HD-NMMT and DEME-HDMA-OD-NMMT.	
Figure	Schematic diagram of exsitue preparation of DEME-	81
(2.7)	HDME-HD-NMMT, DEME-HDME-OD-NMMT,	
	DEME-HDMA-HD-NMMT and DEME-HDMA-OD-	
	NMMT.	
Figure	Schematic Diagram for Pour Point Measurement	85
(2.8)		
Figure	Pour Point Measurement Refrigerator	86
(2.9)		
Figure (2.10)	The Brookfield Viscometer and Water Bath	88
Figure	Tribology unit of MCR 502	90