

CYP1B1 Gene Mutation Impact on Prognosis of Primary Congenital Glaucoma

Thesis

Submitted for partial fulfillment of M.D. Degree in **Ophthalmology**

By

Noha Salah Mohammad

MB. Bch, M.Sc., Ophthalmology Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Saad Mohamed Rashad

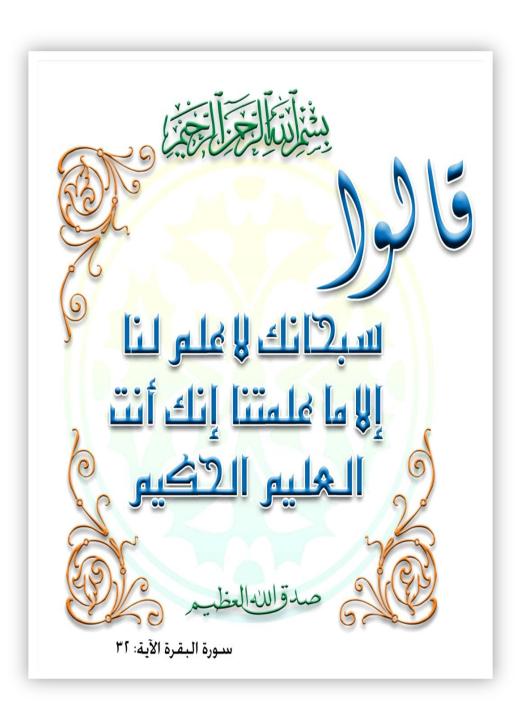
Professor of Ophthalmology Faculty of medicine, Ain-Shams University

Prof. Dr. Tarek Ahmed el Maamoun

Professor of Ophthalmology Faculty of medicine, Ain-Shams University

Prof. Dr. Osama Kamal Zaki

Consultant of genetics Ain-Shams University hospitals


Prof. Dr. Thanaa Helmy Mohamed

Professor of Ophthalmology Faculty of medicine, Ain-Shams University

Dr. Samah Mahmoud Fawzy

Lecturer of Ophthalmology Faculty of medicine, Ain-Shams University

> Ophthalmology department Faculty of Medicine Ain Shams University Cairo - Egypt 2019

Acknowledgement

First of all, I would like to express my deep gratitude to **ALLAH** for His care and generosity throughout my life.

Really I can hardly find the words to express my gratitude to **Prof.** Dr. Saad Mohamed Rashad, Professor of Ophthalmology, Faculty of medicine, Ain-Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work. under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Tarek Ahmed el Maamoun,** Professor of Ophthalmology, Faculty of medicine, Ain-Shams University, for his continuous directions, support, invaluable efforts, tireless guidance and for his patience throughout the whole work to get this work into light.

I owe special feeling of gratitude to Prof. Dr. Osama Kamal Zaki, Consultant of genetics, Ain-Shams University hospitals, for his great help, close supervision, wise opinions, guidance and his continuous encouragement and for his precious effort. Without his support, this work would not have been completed.

My deep appreciation to **Prof. Dr. Thanaa Helmy Mohamed,** Professor of Ophthalmology, Faculty of medicine, Ain-Shams University, for her valuable instructions, unlimited help and great deal of support, her endless patience with me and for her experienced guidance and helpful suggestions that make the completion of this work possible.

Last but not least, I can't forget to thank with all appreciation Dr. Samah Mahmoud Fawzy, Lecturer of Ophthalmology, Faculty of medicine, Ain-Shams University, for the efforts and time she has devoted to accomplish this work.

Words fail to express my love, respect and appreciation to my Parents and my Husband for their unlimited help, support and pushing me forward in every step of my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	vii
Introduction	1
Aim of the Work	3
Review of Literature	4
Patients and Methods	56
Results	64
Discussion	85
Conclusion	100
Summary	109
References	112
Arabic Summary	

List of Abbreviations

Abbrev.		Full-term
AA AC	:	Arachidonic acid Anterior chamber
AH	:	Aqueous humor
A119S	:	Polymorphism of alanine amino acid changed to serine. (non disease causing)
A443G	:	Mutation of alanine amino acid changed to glycine. (non disease causing)
ASD	:	Anterior segment dysgenesis
CCS	:	Conserved core structure.
CDR	:	Cup/disc ratio
Cm	:	centiMorgan unit of recombinant frequency which is used to measure genetic distance.
CW- TSCPC	:	Continuous wave transscleral cyclophotocoagulation
CYP1B1	:	Cytochrome P450 family 1 subfamily b
D430Afs*2	:	The frameshift mutation where aspartate amino acid was changed to alanine as a first amino acid affected by the change.
D449D	:	Polymorphism with no amino acid change. (non disease causing)
DNA	:	Deoxy ribo nucleic acid
dNTPs	:	Deoxy nucleotide triphosphate
E173K	:	Mutation of Glutamate Amino acid changed to lysine
EETs	:	Epoxyeicosatrienoic acid regioisomers

ECM : Extra cellular matrix

EUA : Examination under anesthesiaFDA : Food and drug administration

G329A : Mutation of Glycine Amino acid changed to

alanine

G61E : Mutation of Glycine Amino acid changed to

Glutamate

GSH : glutathione

HETEs: hydroxyeicosatetraenoic acids

H2O2 : Hydrogen peroxide

IOP : Intraocular pressure

KCL : Potassium chlorideLM : longitudinal muscle

LTBP2: Latent transforming growth factor beta

binding protein 2

MgCl2 : Magnesium chloride

MMC: Mitomycin C

MP- : Micro pulse transscleral cyctophotocoagulation

NAC : N-acetylcysteine

N453S : Polymorphism of aspargine amino acid

changed to serine. (non disease causing)

NCBI : National center for biotechnology

information USA

OD : Oculus dextrus = right eye

OMIM : Online Mendelian inheritance in man

OS : Oculus Sinistrus = left eye

OU : Oculus Uterque = both eyes.

PCG: Primary congenital glaucoma

PCR : Polymerase chain reaction

RA : Retinoic acid.Postn : periostin gene

ROS : Reactive oxygen species

R368H: Mutation of arginine Amino acid changed

to Histidine at position 368

R469W: Mutation of arginine Amino acid changed

to tryptophan at position 469

R444Q : Mutation of arginine Amino acid changed

to glutamine

R48G: Polymorphism of arginine amino acid

changed to glycine. (non disease causing)

S476P : Mutation of Serine Amino acid changed to

proline

SIFT : Sorting intolerant from tolerant

SNPs : Single nucleotide polymorphisms

SOD : superoxide dismutase

SST : Subscleral trabeculectomy

Taq : Thermos aquatiqus thermostable DNA

polymerase.

TBE : Trisborate EDTA

TM : Trabecular meshwork

tris-HCL : Buffer

V243V : Polymorphism with no amino acid change.

(non disease causing)

V432L : Polymorphism of valine amino acid

changed to leucine. (non disease causing)

List of Tables

Table No	. Title	Page No.
Table (1):	Hoskins classification	14
Table (2):	Effect and side effects of antigla medications in PCG patients	
Table (3):	Cyp1b1 deficiency and altered function	
Table (4):	Genetic tests available for glaucoma	51
Table (5):	Primers used in the study	62
Table (6):	Demographic data distribution of th group.	
Table (7):	Genotype distribution of the study g	roup 67
Table (8):	Preoperative data distribution of the group.	•
Table (9):	Postoperative data distribution of th group.	•
Table (10):	Need for secondary surgical interdistribution of the studied eyes	
Table (11):	Comparison between group A according to demographic data	
Table (12):	Comparison between Group A according to clinical data at presentation	
Table (13):	Comparison between Group A according to IOP at presentation	
Table (14):	Comparison between group A according to need for secondary intervention.	surgical

Table (15):	Comparison between Group A and B according to postoperative data	. 77
Table (16):	Relation between genotype and surgical outcome	. 78
Table (17):	Preoperative CDR and surgical outcome	. 78
Table (18):	Relation between family history and surgical outcome	. 79
Table (19):	Relation between consanguinity and surgical outcome.	. 79
Table (20):	Relation between Preoperative IOP and surgical outcome	. 80
Table (21):	Preoperative and postoperative IOP from eyes included in the study.	. 80
Table (22):	Mutations detected	. 82
Table (23):	SNPs identified in the studied group	. 83
Table (24):	Severe phenotypes associated with different mutations.	. 84

List of Figures

Figure No	o. Title F	age	No.
Figure (1):	General classification of glaucoma	a	6
Figure (2):	Sketch and Histopathologic slide chamber angle		
Figure (3):	Normal iris		7
Figure (4):	The scleral sulcus, in which trabecular meshwork lies.		
Figure (5):	The three layers of the training meshwork (uveal, corneoscleral juxtacanalicular)	, and	
Figure (6):	Pillars of the uveal trabecular mes in scanning electron micrograph		
Figure (7):	Scanning electron micrograp trabecular endothelial cells with nuclei and indistinct cell borders	large	
Figure (8):	Schlemm's canal. Aqueous pas the canal by way of the vesicles		
Figure (9):	Schwalbe's line, demonstrating tra from trabecular meshwork endothel		
Figure (10):	Normal infant angle shows the iri prominent ciliary body band be discernible scleral spur and trabed and one angle variant in conglaucoma shows the iris root but it ciliary body band due to trans	out no culum; genital not the	

	amorphous tissue that obscures the trabeculum	12
Figure (11):	Worldwide distribution of CYP1B1 mutations in PCG.	19
Figure (12):	Goniotomy – arrow shows the cleft	24
Figure (13):	Trabeculotomy	25
Figure (14):	Schematic Diagram of CYP1B1 gene	41
Figure (15):	The wild-type and mutant forms of the molecule	42
Figure (16):	Localization of ocular cytochrome P450 and esterase enzymes in ocular tissues	44
Figure (17):	Pie chart genotype distribution of the study group	67
Figure (18):	Pie chart surgical outcome distribution of the study groups	70
Figure (19):	Pie chart need for secondary surgical intervention distribution of the study group.	71
Figure (20):	Bar chart between Group A and B according to family history and consanguinity.	73
Figure (21):	Bar chart between Group A and B according to age presentation (m)	75
Figure (22):	Bar chart between polymorphism and disease causing mutation according to need for secondary surgical intervention	76
Figure (23):	Bar chart between polymorphism and disease causing mutation according to	

	need for medication at last visit and surgical outcome
Figure (24):	Bar chart between surgical outcome and consanguinity of the study group
Figure (25):	Bar chart of the frequent mutations 82
Figure (26):	SNPs identified in the studied group83
Figure (27):	Severe phenotypes associated with mutations

Introduction

laucoma refers to a group of disorders characterized by the death of retinal ganglion cells, optic nerve cupping, and visual field loss. This highly complex and multifactorial disease has multiple genetic and environmental influences (*Aboobakar and Allingham*, 2014).

In recent years, substantial progress has been made toward understanding the genetic basis of various forms of the disease. Gene-based screening tests are currently available for several early-onset forms of glaucoma (*Aboobakar and Allingham*, 2014).

Primary congenital glaucoma (PCG) is a severe form of glaucoma that presents early in life. PCG is a clinical and genetic entity that is distinct from juvenile forms of glaucoma. Despite its rarity, PCG and other forms of childhood glaucoma were once the leading cause of admission to schools for the blind in the United States in the first part of the 20th Century (*Abu-Amero et al.*, 2011).

PCG results from developmental abnormalities (trabeculodysgenesis) that affect the aqueous humor outflow pathway. These changes cause elevated intraocular pressure (IOP) and secondary glaucomatous optic nerve damage. (*Abu*-

Amero et al., 2011), and if left untreated, leads to irreversible blindness (Chakrabarti et al., 2010).

The incidence of PCG varies among geographic locations and ethnic communities, from 1:10,000– 20,000 in western countries, to 1:2,500 and 1:250 in inbred Slovakian Gypsy and Saudi Arabian populations, respectively (*Hilal et al.*, *2010*).

The link between PCG and gene abnormalities is the initial step in the establishment of the pathophysiology of the disease (*Badeeb et al.*, 2014).

Aim of the Work

To identify mutations in CYP1B1 gene in cases of primary congenital glaucoma, and its correlation to disease severity and surgical outcome (phenotype genotype correlation).