

# PCR GENETIC EXPRESSION OF INTERLEUKIN 37 IN THE EUTOPIC AND ECTOPIC ENDOMETRIUM OF WOMEN WITH ENDOMETRIOSIS

#### **Thesis**

Submitted for Partial Fulfillment of the MD Degree in Gynecology and Obstetrics

By

#### Sayeda Ibrahim EL-Desouky

M.B., B.Ch. (1997), - M.Sc. (2015)

Faculty of Medicine-Ain Shams University
Specialist of Gynecology and Obstetrics in Benha Teaching Hospital

**Under Supervisors** 

# **Prof. Ihab Fouad Serag Eldin Allam**

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

# **Prof. Amgad Alsaid Abou-Gamrah**

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

#### **Dr. Ahmed Mohamed Abbas**

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

### **Dr. Dina Aly Mohamed Aly Ragab**

Lecturer of Clinical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019



Above all and first of all; all thanks to **ALLAH** the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **PROF. IHAB FOUAD SERAG ELDIN ALLAM** Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University I am greatly indebted to him for suggesting and planning the subject, supervising the whole work, reading and criticizing the manuscript. I will never forget his unlimited help, continuous support, kind encouragement, constructive criticism and wise guidance. To him words of praise are not sufficient.

I would like also to express my sincere gratitude and appreciation to **PROF. AMGAD ALSAID ABOU – GAMRAH** Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University for his helpful guidance, valuable advice, meticulous care, great effort and generous help and support throughout this work.

I'm particularly very grateful to **DR. AHMED MOHAMED ABBAS** Lecturer of Obstetrics and Gynecology
Faculty of Medicine, Ain Shams University for his time and
advice for suggesting, reading and supervision throughout
the practical part of this work.

I'm particularly very grateful to **DR. DINA ALY MOHAMED ALY RAGAB** Lecturer of Clinical pathology Faculty of Medicine, Ain Shams University for her time and advice for suggesting, reading and supervision throughout the practical part of this work.

# Contents

| Subjects                                                        | Page   |
|-----------------------------------------------------------------|--------|
| List of abbreviations<br>List of figures<br>List of tables      | IV     |
| • Introduction                                                  | 1      |
| Aim of the Study                                                | 4      |
| • Review of Literature                                          |        |
| ♦ Chapter (I): Endometriosis                                    | 5      |
| ◆ Chapter (II): Cytokines and Endometrios Role of Immunological | is-the |
| Alterations                                                     | 34     |
| ♦ Chapter (III): Interleukin-37                                 | 49     |
| Patients and Methods                                            | 66     |
| • Results                                                       | 82     |
| • Discussion                                                    | 98     |
| Summary and Conclusion                                          | 116    |
| • Recommendations                                               | 122    |
| • References                                                    | 123    |
| Arabic Summary                                                  |        |

# List of Abbreviations

| CA-125 | Cancer Antigen-125.                               |
|--------|---------------------------------------------------|
| CCL    | Motif Chemokine Ligand.                           |
| CD     | Cluster of differentiation.                       |
| CGH    | Comparative genomic hybridization.                |
| cIVF   | Conventional Invirto Fertilization.               |
| CXCL   | Chemokine (C-X-C motif) ligand.                   |
| DCs    | Dendritic cells.                                  |
| DIE    | Deep infiltrating endometriosis.                  |
| eEPs   | Endometrial, epithelial progenitor cells.         |
| eESCs  | Ectopic endometrial stromal cells.                |
| EFI    | Endometriosis fertility index.                    |
| ELISA  | Enzyme-linked immunosorbent assay.                |
| eMSCs  | Endometrial mesenchymal stem cells.               |
| G-CSF  | Granulocyte-colony stimulating factor.            |
| GM-CSF | Granulocyte-macrophage colony stimulating factor. |
| GnRH   | Gonadotropin-releasing hormone.                   |
| G-Rg3  | Ginsenoside-Rg3.                                  |
| G-Rh2  | Ginsenoside Rh2.                                  |
| IBD    | Inflammatory bowel disease.                       |
| IL     | Interleukin.                                      |
| IVF    | Invitro fertilization.                            |
| MCP-1  | Monocyte chemoattractant protein-1.               |
| MHC    | Histocompatibility complex.                       |
| MIF    | Migration inhibitory factor.                      |
| MSCs   | Mesenchymal stem cells.                           |
| mTOR   | Mammalian Target of Rapamycin.                    |
| PBMC   | Peripheral blood mononuclear cell.                |

# List of Abbreviations

| PI3K/AKT | Phosphoinositide 3 kinase/protain kinase B.         |
|----------|-----------------------------------------------------|
| PPD      | Protopanaxadiol.                                    |
| PPT      | Protopanaxatriol.                                   |
| PTEN     | Phosphatase and tensin homolog.                     |
| QOL      | Quality of life.                                    |
| RNS      | Reactive nitrogen species.                          |
| ROS      | Reactive oxygen species.                            |
| SHiP     | Spontaneous haemoperitoneum in pregnancy.           |
| SIGIRR   | Single Immunoglobulin Domain-Containing             |
|          | IL1R-Related Protein.                               |
| siRNA    | Small interfering RNA.                              |
| SMAD3    | Mothers against decapentaplegic homolog 3.          |
| SNPs     | Single nucleotide polymorphisms.                    |
| STAT3    | Signal transducer and activator of transcription 3. |
| TLR      | Toll-like receptor.                                 |
| TNF      | Tumor necrosis factor.                              |
| VEGF     | Vascular endothelial growth factor.                 |
| VEGFR2   | Vascular endothelial growth factor receptor two.    |

# List of Figures

| No.       | <u>Figure</u>                                                                                                                                                                                                                                                                                            | <b>Page</b> |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1         | Diagram illustrating the histological changes in<br>the human endometrium during the menstrual<br>cycle (A), and P4/P4 receptor (PGR) and<br>cAMP signaling in decidualization (B).                                                                                                                      | 10          |
| <u>2</u>  | Laparoscopic view pelvic ednometriosis                                                                                                                                                                                                                                                                   | 11          |
| <u>3</u>  | Endometriosis fertility index (EFI) Surgery form                                                                                                                                                                                                                                                         | 13          |
| <u>4</u>  | The cytokines interplay and their roles in endometriosis                                                                                                                                                                                                                                                 | 20          |
| <u>5</u>  | A comparison between classical (adaptive)- and trained (innate) immunological memory.                                                                                                                                                                                                                    | 37          |
| <u>6</u>  | The IL- 1 family of ligands and receptors.                                                                                                                                                                                                                                                               | 39          |
| 7         | Variants of IL-37. The five splice variants transcripts of the IL-37 gene are shown. Exons 5 and 6 are shared with all five isoforms. Exon 1 is absent in IL-37a only. IL-37c shares with IL-37b exons 1, 2, 5 and 6. IL-37d is similar to IL-37b, sharing exons 1, 4, 5 and 6. E, exon; IL, interleukin | 50          |
| <u>8</u>  | Homology model of IL-37 interaction with IL-18R                                                                                                                                                                                                                                                          | 51          |
| 9         | Exon-intron structure of the human IL1F7 gene. Exon usage in the five splice isoforms is depicted. The size of exons is indicated just below the exon boxes. The size of the intervening introns (green) is shown at the top                                                                             | 52          |
| <u>10</u> | Possible biological functions of IL-37. IL-37 exerts significant anti-inflammatory, anticancer, immune deviatory, immuno-suppressive, and metaboregulatory effects. IL-37 dramatically reduces the cytokines secretion in macrophages and DCs. The activation and                                        | 53          |

| No.       | <u>Figure</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Page</b> |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|           | differentiation of macrophages, DCs and T cells are also inhibited by IL-37. In addition to healthy tissues, IL-37 is variably expressed in many cancer cells. IL-37 exerts antitumor immune responses through recruiting NK cells into tumors tissues. The binding of IL-37 to its receptor activates STAT-3, and inhibits NF-kB signals. IL, interleukin; STAT-3, signal tranducer and activator of transcription 3; NF-kB, nuclear factor kB; DC, dendritic cell; Treg, T regulatory cell; TNFα, tumor necrosis factor α; CXCL10, C-X-C motif chemokine 10 |             |
| <u>11</u> | IL-37 processing and release. Precursor IL-37 is processed by caspase-1 to the mature form (IL-37) which subsequently translocates to the nucleus upon binding to SMAD3. The SMAD3/IL-37 complex inhibits proinflammatory cytokine gene transcription in the nucleus and in consort with the tripartite molecule (IL-37/IL-18Rα/IL-1R8) inhibits downstream signal transduction pathways including NF-κB and mitogen activated protein kinase (MAPK) pathway. Adapted with modifications.                                                                     | 64          |
| 12        | It should be noted the considerable overlap in the causes of exclusion in the study, e.g. some women were excluded due to concomitant hormonal treatment within the previous two months and medical co-morbidity.                                                                                                                                                                                                                                                                                                                                             | 83          |
| <u>13</u> | Box plots of age and parity in the two study groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85          |
| <u>14</u> | Bar graph for indications of laparoscopy in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87          |

# List of Figures

| No.       | <u>Figure</u>                                                                                                                                                                                             | <u>Page</u> |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|           | two study groups.                                                                                                                                                                                         |             |
| <u>15</u> | Normalized target gene expression of IL-37 in eutopic endometrium and intraperitoneal fluid in the two study groups                                                                                       | 90          |
| <u>16</u> | Paired comparison of normalized target gene expression of IL-37 in eutopic endometrium and intraperitoneal fluid in each of the two study groups.                                                         | 92          |
| <u>17</u> | Correlation between normalized target gene expression (y-axis) in eutopic endometrium (upper) and intraperitoneal fluid (lower) and age (left), rAFS score (middle) and rAFS stage (right) on the x-axis. | 93          |

# List of Tables

| <u>No.</u> | <u>Table</u>                                                                                                                                                                                        | <u>Page</u> |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1          | Comparison between study groups regarding basic demographic characteristics.                                                                                                                        | 84          |
| <u>2</u>   | Comparison between study groups regarding laparoscopic characteristics.                                                                                                                             | 86          |
| <u>3</u>   | Comparison between normalized target gene expression fold changes (2-\Delta\CT) in eutopic endometrial tissues and intraperitoneal fluid of the two study groups.                                   | 89          |
| 4          | Paired comparison between normalized target gene expression fold changes (2- $\Delta\Delta$ CT) in eutopic endometrial tissues and intraperitoneal fluid in each of the two study groups.           | 91          |
| <u>5</u>   | Correlation between normalized target gene expression fold changes in eutopic endometrium and intraperitoneal fluid in women with endometriosis and age, parity and rAFS endometriosis score/stage. | 93          |

# PCR GENETIC EXPRESSION OF INTERLEUKIN 37 IN THE EUTOPIC AND ECTOPIC ENDOMETRIUM OF WOMEN WITH ENDOMETRIOSIS

A protocol of thesis
Submitted For Partial Fulfillment of MD Degree
In Gynecology and Obstetrics

Submitted By

#### Sayeda Ibrahim EL-Desouky

M.B., B.Ch. (1997), - M.Sc. (2015) Faculty of Medicine-Ain Shams University Specialist of Gynecology and Obstetrics in Benha Teaching Hospital

Supervised By

# **Prof. Dr. Ihab Fouad Serag Eldin Allam**

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

# **Prof. Dr. Amgad Alsaid Abou -Gamrah**

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

#### **Dr. Ahmed Mohamed Abbas**

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

### **Dr. Dina Aly Mohamed Aly Ragab**

Lecturer of Clinical and Chemical pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

#### **INTRODUCTION**

Endometriosis is defined as the presence of normal endometrium abnormally implanted in locations other than the uterine cavity. Depending on the area identified, endometriosis is characterized as endopelvic or extrapelvic (*Yu et al.*, 2013). The enterpelvic ectopic implants are located in the minor pelvis, the ovaries, the fallopian tubes and the uterosacral ligaments. Whereas, the more unusual extrapelvic implantation sites are the abdominal wall, scars of the perineum, the urinary and gastrointestinal tract and the nasal mucosa. Endometriosis can affect any woman from befor menarche until postmenopause (*Simoglou et al.*, 2012).

Endometriosis is the most common cause of chronic pelvic pain in females. Its prevalence has been estimated to 1-2% of reproductive age in females and it is more common (15-25%) among women with infertility problems. The prevalence is 40-60% among women with dysmenorrhea and it is extremely rare after menopause, because of the estrogen dependence of the ectopic tissue (*Bulletti et al.*, 2010). The relapse of endometriosis during menopause has been correlated with hormonal replacement therapy (*Giarenis et al.*, 2009).

The etiology of the disease is complex, and is likely to result from a combined interplay of genetic and reproductive risk factors. Endometriosis has an estimated heritability of about 51% (*Treloar et al.*, 1999).

One of the theories is that peritoneal fluid (PF) in women with endometriosis is abundant in activated macrophages that secrete a variety of local products, such as growth factors and cytokines. (Harada et al., 2001; Sakamoto et al., 2003). Therefore, several growth factors, cytokines, immune cells and hormones in eutopic and ectopic endometrium, are seen as playing a role in the pathophysiology of endometriosis-related infertility (Nothnick, 2001). Abnormalities inherent to the eutopic endometrium that are not located in the endometrium of women without endometriosis are likely to be involved in the ectopic growth outside the uterine cavity (Ulukus et al., 2006 and Li et al., 2011).

Cytokines are the main mediators and communicators of the immune system. Although these polypeptides are mostly produced by immune cells, most nucleated cells also produce cytokines, though in lesser quantities. Immune cells use cytokines to coordinate the host response to infection or trauma via autocrine and paracrine signaling. Based on their immune-regulatory role, cytokines are broadly classified as either pro- or anti-inflammatory. Proinflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor alpha (TNF- $\alpha$ ), interferon gamma (IFN- $\gamma$ ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) primarily initiate and amplify the inflammatory response (*Cameron and Kelvin, 2003*).

Anti-inflammatory cytokines such as IL-4, IL-6, and IL-10 primarily regulate the intensity and duration of the inflammatory response by suppressing the effects of proinflammatory cytokines, although some have inflammatory roles as well (*Cameron and Kelvin*, 2003).

The normal immune response to pathogens or injury entails a delicate balance of inflammatory and anti-inflammatory cytokines and regulators in order to be effective and remain safe for the host. Thus, cytokine dysregulation is recognized as an important aspect of the pathogenesis of numerous conditions, including endometriosis. Peritoneal fluid contains higher concentration of proinflammatory and angiogenic cytokines presumably produced from immune cells such as macrophages and from the lesion itself, which contribute to the pathogenesis of endometriosis (*Jin et al.*, 2008).

Interleukin 37 (previously called IL-1F7) is a discovered member of the IL-1 family. Interleukin 37 is located both in the cytoplasm and in the nucleus and is also secreted (*Nold et al., 2010*). The key role of IL-37 is inhibiting both innate and adaptive immunity by decreasing expression of pro-inflammatory cytokines (*Bulau et al., 2014*). Anti-inflammatory activity of IL-37 requires IL-18Ra and IL-1R8 to function together (*Nold-Petry et al., 2015*). A recent study demonstrates that IL-37 as an anti-inflammatory cytokine is increased in patients with various autoimmune and inflammatory diseases.

A previous study reported that the immunostaining score of IL-37 was significantly higher in the eutopic endometrium  $(4.79 \pm 1.91)$  and ectopic endometrium  $(7.71 \pm 1.78)$  of women with ovarian endometriosis compared to that of controls without endometriosis  $(3.27 \pm 1.62)$  (*Jiang et al.*, *2015*).

#### **AIM OF THE STUDY**

This work aims to study the PCR genetic expression of interleukin 37 in the eutopic and ectopic endometrium of women with endometriosis in comparison with controls.

#### **HYPOTHESIS**

In women with endometriosis, the PCR genetic expression of Interleukin 37 in the eutopic and ectopic endometrium may be highly expressed in comparison to normal ones.

# **RESEARCH QUESTION**

In women with endometriosis is the PCR genetic expression of Interleukin 37 in the eutopic and ectopic endometrium highly expressed in comparison to that of controls?

#### **PATIENTS AND METHODS**

#### **Setting:**

The study will be conducted in Ain Shams University Maternity Hospital in laparoscopy department.

#### **Study Design:**

Case control study will be conducted in laparoscopy department in Ain Shams University Maternity Hospital to study the association between expression of interleukin 37 in the eutopic and ectopic endometrium of women with endometriosis in comparison with controls. The PCR genetic expression of interleukin 37 will be conducted in the clinical and chemical pathology department. The study will be performed form October 2016 to October 2018.

#### **Sample Size Justification:**

The required sample size has been calculated using the IBM© Sample Power© Software (IBM© Corp., Armonk, NY, USA).

The primary outcome measure is the PCR genetic expression of interleukin 37 (IL-37) in the eutopic and ectopic endometrium.

A previous study reported that the immunostaining score of IL-37 was significantly higher in the eutopic endometrium  $(4.79 \pm 1.91)$  and ectopic endometrium  $(7.71 \pm 1.78)$  of women with ovarian endometriosis compared to that of controls without endometriosis  $(3.27 \pm 1.62)$  (*Jiang et al., 2015*).

So, it is estimated that a sample size of 23 patients with ovarian endometriosis and 23 controls would achieve a power of 80.1% (type II