EVALUATION OF POLY-β-HYDROXYBUTYRIC ACID CONTENTS OF SOME RHIZOBIAL STRAINS AND THEIR PERFORMANCE UNDER DIFFERENT STRESS CONDITIONS

By

WAFAA HAMDY ALI RADWAN

B.Sc. (Agric. Microbiology), Fac. Agric., Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

EVALUATION OF POLY-β-HYDROXYBUTYRIC ACID CONTENTS OF SOME RHIZOBIAL STRAINS AND THEIR PERFORMANCE UNDER DIFFERENT STRESS CONDITIONS

By

WAFAA HAMDY ALI RADWAN

B.Sc. (Agric. Microbiology), Fac. Agric., Ain Shams University, 2014

This thesis for M.Sc. degree has been approved by:

Dr. Fekry Mohamed Ghazal Head Researches Emeritus of Agric. Microbiol., Agric. Microbiol. Dept., Soils, Water and Environ. Res. Inst., Agric. Res. Center (ARC), Giza, Egypt. Dr. Wedad El-Tohamy El-Sayed Eweda

Professor Emeritus, of Agric. Microbiol., Agric. Microbiol. Dept., Fac. Agric., Ain Shams University.

Dr. Shawky Mahmoud Selim

Professor Emeritus of Agric. Microbiol., Agric. Microbiol. Dept., Fac. Agric., Ain Shams University.

Date of Examination: 18 / 1 / 2020

EVALUATION OF POLY-β-HYDROXYBUTYRIC ACID CONTENTS OF SOME RHIZOBIAL STRAINS AND THEIR PERFORMANCE UNDER DIFFERENT STRESS CONDITIONS

By

WAFAA HAMDY ALI RADWAN

B.Sc. (Agric. Microbiology), Fac. Agric., Ain Shams University, 2014

Under the supervision of:

Dr. Shawky Mahmoud Selim

Professor Emeritus of Microbiological Agriculture, Microbiological Agriculture Department, Faculty of Agriculture, Ain Shams University (Princeple Supervisor).

Dr. Samah Hashem Abuhussien

Lecturer of Microbiological Agriculture, Microbiological Agriculture Department, Faculty of Agriculture, Ain Shams University.

Dr. Mahmoud Abd Elmaksoud Nassef

Head Researches Emeritus of Agric. Microbiol., Agric. Microbiol. Dept., Soils, Water & Environ. Res. Inst., Agric. Res. Center (ARC), Giza, Egypt.

ABSTRACT

Wafaa Hamdy Ali Radwan "Evaluation of Poly-β-Hydroxybutyric acid contents of some rhizobial strains and their performance under different stress conditions". Unpublished M.Sc. Thesis, Department of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, 2020.

One hundred and eight *Rhizobium* isolates were isolated from the root nodules of Vicia faba and Phaseolus vulgaris grown in different locations belonging to nine governorates in Egypt. All isolates were confirmed as rhizobia after the authentication test in growth medium and pot experiment under controlled environmental conditions. Rhizobium fabae and Rhizobium phaseoli were identified based on morphological characteristics, Gram staining, and further confirmation by sequencing the 16SrRNA gene. A statistical approach of Response surface methodology (RSM) response was used for PHB production optimization by the selected isolates. Eleven variables including culture conditions (pH, incubation period, inoculum size, temperature and agitation speed) nutritional factors (media components), as mannitol, sucrose, yeast extract; glycine, K₂HPO₄, and MgSO₄ were analyzed by Plackett-Burman design for their effects, on PHB production. For Rhizobium fabae, the main effects which significantly affected PHB production were sucrose, yeast extract, incubation time, and agitation rate. For *Rhizobium phaseoli*, the main factors affected PHB production were sucrose, yeast extract, Glycine and MgSO₄. A central composite design (CCD) was carried out for selecting the optimum levels for all significant factors obtained from Plackett-Burman Design (PBD). For Rhizobium fabae strain, The maximum production (78.51%) was achieved at run number 19 in the presence of 25 g/l sucrose, 0.5 g/l yeast extract, 150 rpm incubated for two days. On the other hand, *Rhizobium phaseoli* reached the maximum production (77.70%) at run 36 in the presence of 25 g/l sucrose, 0.0 g/l yeast extract, 0.87 g/l glycine, 0.3 g/l MgSO₄ and 5% incubation size. The effect of different stress

conditions (salinity, temperature, pH and drought) on these strains was studied at the lab scale. 5% NaCl showed 50% loss on the growth of both Rhizobium fabae and Rhizobium phaseoli when grown on base medium compared with the modified one. Thermal stress conditions illustrated that both of *Rhizobium fabae* and *Rhizobium phaseoli* can withstand high temperature (45°C) in the modified medium when compared with the growth on the base medium to reach a growth loss 63.3and 56.4% for the Rhizobium fabae and Rhizobium phaseoli, respectively, on the base one. Acidity stress conditions showed that both of Rhizobium fabae and Rhizobium phaseoli can withstand alkalinity conditions (pH 10) in the modified medium when compared with the growth on the base medium to reach a growth loss 75 and 30% for the Rhizobium fabae and Rhizobium phaseoli, respectively, on the base one. Drought stress conditions showed that both of Rhizobium fabae and Rhizobium phaseoli can withstand drought conditions (by using PEG 3.5%) in the modified medium when compared with the growth on the base medium to reach a growth loss 90 and 65% for the *Rhizobium fabae* and *Rhizobium phaseoli*, respectively, on the base one.

Keywords: *Rhizobium fabae*; *Rhizobium phaseoli;* Poly--Hydroxybutyrate (PHB); Plackett–Burman design; central composite design; salinity; temperature; pH; drought and affected soil.

ACKNOWLEDGEMENT

The authoress would like to express her deeply indention to her supervisor (late) **Prof. Dr. Mohamed El-Sayed Mostafa Elhaddad** (May Allah have mercy upon him), for his parental, scientific support, valuable advice, expert guidance and keen interest throughout this study.

I am highly grateful to, **Prof. Dr. Shawky Mahmoud Selim,** Professor Emeritus of Agric. Microbiology, Faculty of Agriculture., Ain Shams University, for his direct supervision, suggesting the problem and drawing the plan of work as well as his continuous advice and criticism during all the study period.

Special thanks are extended to **Prof. Dr. Mahmoud Abd-Elmaksoud Nassef**, Professor Agric. Microbiology, Soils, Water and Environmental Res. Inst. Agriculture Research Center (ARC), and **Dr. Samah Hashem Abuhussien**, Assistant Professor of Agric. Microbiology, Faculty of Agriculture, Ain Shams University for her generous supervision, beneficial discussion and faithful help throughout this work as well as writing up the manuscript.

Sincere thanks are also extended to all my colleagues and staff members of the **Unit of Biofertilizers**, Fac. Agric., Ain Shams Univ. for providing facilities and encouragement.

The authoress wishes also to express her hearty thanks and gratitude for all **Staff Members** of Agricultural Microbiology Department, Ain Shams University, for their kind cooperation and encouragement.

Last but not least, I would like to express my all grateful thanks for my small family especially my parents, husband and my children for their continuous support they have given me throughout my time in preparing this work. I could not have done it without them.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	XI
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Grain legumes	4
1.1. Vicia faba	4
1.2. Phaseolus vulgaris	5
2. Rhizobia	6
2.1. Rhizobia- Legume Symbiosis	7
2.2. Mechanisms of rhizobia-legume symbiotic interactions	7
2.3. Host specificity and symbiotic effectiveness	10
3. Biofertilizers for Sustainability	11
3.1. Rhizobia as a biofertilizer	12
4. Factors affecting rhizobia population and legume and nitrogen	
fixation	12
4.1. Heat stress	13
4.2. Salt stress	15
4.3. pH Stress	18
4.4. Drought stress	19
5. Poly-β- hydroxy butyrate (PHB)	23
6. Statistical approach using Response Surface Methodology	
(RSM)	25
6.1. Optimization staages using RSM	26
MATERIALS AND METHODS	30
1.Media used	30
2. Nutrient solutions	30
3. Soil sampling and isolation of <i>Rhizobium</i> sp	31
4. Soil used	32
5. Rhizosphere soil analysis	32

	Page
6. Isolation, purification and cultivation of <i>Rhizobium</i> isolates	33
7. Plant infection technique	34
8. Quantitative determination of PHB production	36
9. Factor affecting <i>Rhizobium</i> growth and the production of PHB	36
10. Molecular identification	37
11. Statistical experimental designs for evaluation of the factors	
affecting PHB production	39
12. Effect of stress condition on <i>Rhizobial</i> isolates growth	43
13. Effect of Drought on plant growth parameters inculated with	
Rhizobium strains	48
14. Statistical analysis	45
RESULTS AND DISCUSSION	46
1. Isolation and authentication of rhizobial isolates	46
2. Screening of the most efficient isolates for PHB production	54
3. Factors affecting the production of PHB by the selected	
Rhizobium isolates	55
4. Molecular identification of two rhizobial isolates (F44 and P32)	
via determining the nucleotide sequences of 16S rRNA gene	69
5. Statistical experimental designs for evaluation of the factors	
affecting PHB production	72
6. Effect of stress condition on <i>Rhizobial</i> isolates growth	94
SUMMARY	115
REFERENCES	120
ARABIC SUMMARY	145

LIST OF TABLES

Table	
No.	
1	N-free Nutrient Solution (Broughton and Dillworth,
	1970)
2	Isolation of different Rhizobial isolates from
	different governerates of Delta soil of Egypt
3	Texture and chemical analysis of soil used for
	cultivation (Pot experimentos)
4	Physic- chemical values for PHB production by
	Rhizobium fabae and Rhizobium phaseoli as actual
	code
5	Plackett-Burman experimental design matrix
	selection of significant variables of PHB production
	by the selected bacteria
6	Central composite desing CCD of independent
	variables for PHB production by <i>Rhizobium fabae</i>
7	Central composite desing CCD of independent
	variables for PHB productiion by Rhiizobium
	phaseeoli
8	Number and percentage of Rhizobial isolates
	incidence isolated from Vicia faba and Phaseolus
	vulgaris plants in different 9 governorates in Egypt
9	The morphological, biochemical and PHB yield (%)
	of the testad 58 isolates from Vicia faba
10	The morphological, biochemical and PHB yield (%)
	of the testad 50 isolates from <i>Phaseolus vulgaris</i>
11	Screening and selection of the most efficient
	rhizobial isolates from Vicia faba and Phaseolus
	vulgaris by plant infection technique
12	Effect of different carbon and nitrogen sources on

Table

No.		Page
	cell dry weight and PHB production by Rhizobium	
	F14 isolate grown on YEM medium at 28°C for 48 h.	
		56
13	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	
	F26 isolate grown on YEM medium at 28°C for	
	48 h	57
14	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	
	F28 isolate grown on YEM medium at 28°C for 48 h.	~ 0
4.5		58
15	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by <i>Rhizobium</i>	
	F44 isolate grown on YEM medium at 28°C for 48 h.	59
16	Effect of differrent carbon and nitrrogen sourcees on	
	cell dry weiight and PHB production by Rhizobium	
	F56 isolate grown on YEM medium at 28°C for 48 h.	60
17	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	
	P6 isolate grown on YEM medium at 28°C for 48 h	61
18	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	
	P12 isolate grown on YEM medium at 28°C for 48 h.	62
19	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	
	P25 isolate grown on YEM medium at 28°C for 48 h.	63
20	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	
	P32 isolate grown on YEM medium at 28°C for 48 h.	64
21	Effect of different carbon and nitrogen sources on	
	cell dry weight and PHB production by Rhizobium	

Гable		
No.		Page
	P46 isolate grown on YEM medium at 28°C for 48	65
	h	
22	The most signfecant efficient carbon and nitrogen	
	sources used for PHB (%) production using selacted	
	rhizobial isolates by RSM statistical approach	66
23	Sequences producing significant alignments of partial	
	sequence of 16SrRNA of Rhizobium F44 isolate with	
	E-value (0.0)	70
24	Sequences producing significant alignments of partial	
	sequence of 16S rRNA of Rhizobium P32 isolate	
	with E-value (0.0)	72
25	Plackett-Burman experimental design matrix	
	selection of significant variables of PHB production	
	by Rhizobuim fabae strain	74
26	Plackett Burman design for the physiochemical	
	parameters affecting PHB production by Rhizobium	
	phaseoli strain	75
27	Central composite desing CCD of independent	
	variables for PHB prodaction by Rhizobium fabae	
	strain	84
28	Central composite desing CCD of independent	
	variables for PHB production by Rhizobium phaseoli	
	strain.	88
29	Effect of different concentration of NaCl on	
	Rhizobium fabaee and Rhizobium phaseoli growth	
	were incubateed at 28°C for 5 daay on rotary shakeer	
	at 150 rpm	95
30	Effect of temperature degree on Rhizobium fabae and	
	Rhizobium phaseoli growth in the original medium	
	and the modified medium were incubated at different	100

Table		
No.		Page
	temperature for 5 day on rotary shaker at 150 rpm	
31	Effect of different levels of initial pH on rhizobial	
	growth on Rhizobium fabae and Rhizobium phaseoli	
	growth in the basic medium and the modified	
	medium growth were incubated at 28°C for 5 day on	
	rotary shaker at 150 rpm	103
32	Effects of drought stress imposed by polyethylene	
	glycol PEG -6000 on the growth of Rhizobium fabae	
	and Rhizobium phaseoli were incubated at 28°C / 10	
	days at 150 rpm	107
33	Effect of drought levels on the plant growth	
	parameters and Nitrogenase activity by Rhizobium	
	fabae and Rhizobium phaseoli	110

LIST OF FIGURES

Fig. No.		Page
1	The percentage (%) of rhizobial isolates incidence	
	isolated from Vicia faba plants in different 9	
	governorates in Egypt	47
2	The percentage of rhizobial isolates incidence	
	isolated from phaseolus vulgaris plants in different 9	
	governorates in Egypt.	47
3	Partial nucleotide sequence (1347 nts) of 16SrRNA	
	of <i>Rhizobium</i> F44 isolate.	70
4	Phylogenetic tree of partial sequence of 16S rRNA of	
	Rhizobium F44 isolate compared to 12 Rhizobium	
	strains recorded in GenBank.	71
5	Partial nucleotide sequence (1405 nts) of 16SrRNA	
	of <i>Rhizobium</i> P32 isolate.	71
6	Phylogenetic tree of partial sequence of 16SrRNA of	
	Rhizobium P32 isolate compared to 13 Rhizobium	
	strains recorded in GenBank	72
7	Plackett-Burman experimental design matrix	
	selection of significant variables of PHB production	
	by Rhizobium fabae strain.	76
8	Plackett-Burman design for the physiochemical	
	parameters affecting PHB production by Rhizobium	
	phaseoli strain	76
9	Pareto graph showing contribution effect % of	
	different variables on PHB production Rhizobium	
	fabae based on the observation of Plackett-Burman	
	design (the orange color represents positive effects	
	and the blue color represents negative effects)	78
10	Pareto graph showing contribution effect % of	
	different variables on PHB production by Rhizobium	
	phaseoli based on the observation of Plackett-	

Fig. No.		Page
	Burman design (the orange color represents positive	
	effects and the blue color represents negative	
	effects).	80
11	Central composite design CCD of independent	
	variables for PHB prodaction by Rhizobium fabae	
	strain	85
12	Three-dimensional response surface showing the	
	effect of sucrose concentration, Yeast extract	
	concentration and incubation time and their mutual	
	effect on the PHB production	85
13	Central composite design CCD of independent	
	variables for PHB production by Rhizobium phaseoli	
	strain	89
14	Three-dimensional response surface showing the	
	effect of surcase concentration and glycine	
	concentration their mutual effect on the PHB	
	production	90
15	Effect of incubation time on production of biomass	
	and PHB accumulation in Rhizobium fabae cells	
	before and after culture medium optimization	91
16	Effect of incubation time on production of biomass	
	and PHB accumulation in Rhizobium phaseoli cells	
	before and after culture medium optimization	93
17	Effect of different concentration of NaCl on	
	Rhizobium fabae growth	96
18	Effect of salinity as NaCl (5%) concentration on	
	Rhizobium fabae growth inoculated in basal and	
	modified medium and incubated at 28°C for 5 day	96
19	Effect of different concentration of NaCl on	
	Rhizobium phaseoli growth	97
20	Effect of salinity as NaCl (4%) concentration on	

Fig. No.		Page
	Rhizobium phaseoli growth inoculated in basal and	
	modified medium and incubated at 28°C for 5 day	97
21	Effect of temperature degree on Rhizobium fabae in	
	the basal medium and the modified médium	100
22	Thermality effect on Rhizobium fabae inoculated in	
	basal and modified medium and incubated at 45°C	
	for 5 days	101
23	Effect of temperature degree on Rhizobium phaseoli	
	in the basal medium and the modified medium	101
24	Thermality effect on Rhizobium phaseoli inoculated	
	in basal and modified medium and incubated at 35°C	
	for 5 days	102
25	Effect of different levels of initial pH on Rhizobium	
	fabae growth in the basal medium and the modified	
	medium	104
26	Effect of alkalinity pH (10) on the growth of	
	Rhizobium fabae inoculated in basal and modified	
	medium and incubated at 28°C for 5 days	104
27	Effect of different levels of initial pH on Rhizobium	
	phaseoli growth in the basal medium and the	
	modified medium	105
28	Effect of alkalinity pH (10) on the growth of	
	Rhizobium phaseoli inoculated in basal and modified	
	medium and incubated at 28°C for 5 days	105
29	Effects of drought stress imposed by PEG -6000 on	
	the growth of <i>Rhizobium fabae</i>	107
30	Drought effect PEG (3.5%) on the growth of	
	Rhizobium fabae inoculated on basal and modified	
	medium and incubated at 28°C for 10 days	108
31	Effects of drought stress imposed by PEG -6000 on	
	the growth of <i>Rhizobium phaseoli</i>	108