

3-D Representation System of Brain Tumors Using Magnetic Resonance Images (MRI)

Dina Mohammed Sherif El-Torky

Teaching Assistant in Basic Science Department, Faculty of Computer and Information Sciences, Ain Shams University

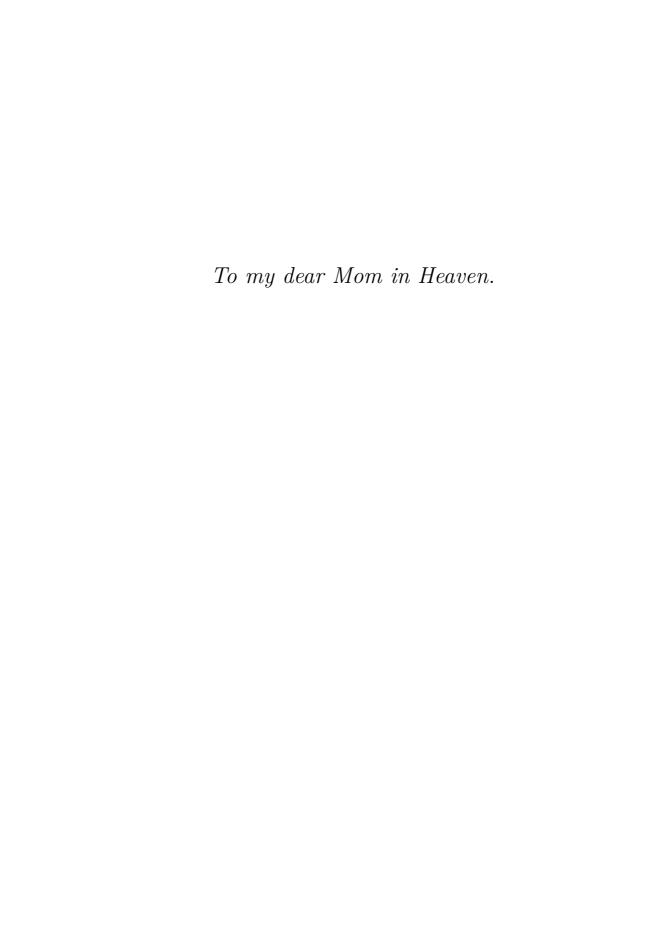
A thesis submitted to the department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

Supervised by:

Prof. Mohamed Ismail Roushdy

Dean of Faculty of Computers and Information Technology Future University in Egypt

Professor of Computer Science-Faculty of Computer and Information Sciences-Ain Shams University


Dr Mohammed Abdel-Megeed Salem

Assistant Professor in Department of Scientific Computing Faculty of Computer and Information Sciences- Ain Shams University Faculty of Media Engineering and Technology- German University in Cairo

Dr Maryam Nabil Al-Berry

Lecturer in Department of Scientific Computing
Faculty of Computer and Information Sciences- Ain Shams University

January 2020

Acknowledgements

I would like to thank Prof. Mohamed Roushdy for his wise guidance and support.

I also would like to thank Dr Mohammed Abd El-Megeed for his helpful supervision and endless motivation.

Moreover, all my gratitude to Dr Maryam Al-Berry for her infinite efforts, dedication and time she gave me since the very beginning till the end of this achievement. Finally, our sincere thanks to the neurosurgeons Dr Ahmad Elsabaa and Dr Aboubakr Gamal at Ain Shams University Hospitals for assessing the method's results.

Abstract

The brain is the most sophisticated and crucial organ to human beings. It controls all the functions of the body, from the involuntary actions such as respiration, digestion and blood circulation, to motor control and sensing and finally feelings, cognition and perception.

Brain tumors are considered one of the most dangerous threats to the health of the human brain. They have various types and classifications, some are treatable and others are not. Diagnosis of brain tumors is mainly done by Magnetic Resonance Imaging (MRI) which has the ability to show the abnormal tissues. After thorough diagnosis, the treatment plan should be set which may include one or more of surgical resection, radio therapy and chemotherapy. For treatable types of tumors, the patient can be totally cured after total tumor resection. While for high grade malignant types, total resection can increase the survival time and the quality of life of the patients significantly.

One of the factors that help in efficient surgical resection of tumors is the prior knowledge of the precise shape, location and size of the tumor. MRI cannot perform this task because the output images of the scan are in the form of a series of 2-dimensional images containing slices of the brain. Hence, the presence of accurate 3-dimensional images for the tumor will help in the resection efficiency.

This thesis presents a modified shape-based interpolation method to form a 3-D model of brain tumors using a series of MRI images. Due to some technical properties of MRI scanners, the output images have intermediate gaps, this missing information prevents accurate 3-D reconstruction for the tumor volume. Hence, the problem is to interpolate the values of tumor volume at the gap areas to get a complete 3-D model for the tumor.

First, the MRI images are segmented using Wavelet Multiresolution Expectation Maximization (WMEM) method, then, the tumor image is extracted forming a binary image. Next, all binary tumor images are converted to distance images using a distance transform function. Then, the B-spline interpolation is applied to calculate the gap area. Finally, the resulting values are thresholded to form the interpolated slices. The tumor volume is then displayed as an isosurface in a 3-D view.

To calculate the accuracy of the method, a slice is re-

moved from the images' series, then the proposed method is used to interpolate its value. The original and interpolated slices are compared showing the accuracy. The proposed method results were compared with the original shape-based interpolation method and another method that uses Hermite interpolation. The proposed method demonstrated improvement of 5.61% and 2.78% on the original shape-based method and the Hermite interpolation method respectively.

Contents

1	Intr	roduction	15
	1.1	Brain Anatomy	15
	1.2	Brain Tumors	17
	1.3	Magnetic Resonance Imaging	18
	1.4	Motivation	20
	1.5	Computer-Aided Diagnosis	24
	1.6	Objective	25
	1.7	Thesis Outline	26
2	Bac	ckground and Related Work	2 9
	2.1	Tumor Segmentation	29
		2.1.1 Threshold-based methods	31
		2.1.2 Region-based Methods	34
		2.1.3 Pixel Classification Methods	37
		2.1.4 Statistical Methods	43
	2.2	Three Dimensional Reconstruction	47
		2.2.1 Delaunay and Alpha-shapes	47
		2.2.2 Zero-Set Methods	50
		2.2.3 Point-based Methods	51
		2.2.4 Interpolation-based Methods	52

55

55

56

		2.3.3 Adaptive Grey-level Gradient Shad-		
		ing	56	
	2.4	Discussion	56	
3	Tur	nor Segmentation and Extraction	59	
	3.1	Expectation Maximization (EM)	59	
	3.2	Multiresolution-based Segmentation	62	
	3.3	Tumor Extraction	64	
4	Tur	nor Reconstruction	71	
	4.1	Distance Image Transform	72	
	4.2	Slice Interpolation	74	
	4.3	Interpolated Slice Binarization	77	
	4.4	Visualization	79	
	4.5	Summary	81	
5	Res	sults, Analysis and Discussion	83	
6	Cor	nclusions and Future Work	97	
R	efere	nces	101	

Tumor Visualization

Z-buffer Gradient shading

Grey Level Gradient Shading . . .

2.3

2.3.1

2.3.2

List of Figures

1.1	Anatomy of the human brain [1]	18
1.2	Brain MRI obtained from (a) Sagittal Plane,	
	(b) Axial plane and (c) Coronal plane [2].	20
1.3	The MRI dimensions [3]	21
1.4	A 3-dimensional image for a tumor inside	
	human brain [4]	24
1.5	Brain tumor Visualization system for Computer	er-
	Aided Diagnosis	25
2.1	Brain MRI with tumor segmentation result.	30
2.2	Classification of segmentation methods	32
2.3	Classification of 3-D reconstruction methods.	48
2.4	3-D visualized tumor model of IBSR data	
	set using Alpha Shape theory [5]	49
3.1	A: First level of Approximation mask, B:	
	Second level of Approximation mask	64
3.2	A: The first level of approximation, B:Horizont	al
	Details, C: Vertical Details, D: Diagonal	
	Details	67

3.3	A: The second level of approximation, B:Horiz	ontal
	Details, C: Vertical Details, D: Diagonal	
	Details	68
3.4	A: The original tumor image, B: The original segmented image using EM, C: The segmented parent image, D: The segmented grandparent image, E: The final segmented image using WMEM, F: The extracted tu-	
	mor	69
3.5	Steps of tumor extraction	70
3.6	Different slices of MRI images for brain tu-	
	mors and the corresponding extracted tumor.	70
4.1	A sample image with its resulting distance	
	image	74
4.2	A sample image showing the thresholding	
	step	78
4.3	A comparison between the proposed mod-	
	ified method and the other methods	79
4.4	Displayed tumor volume without interpo-	
	lation	80
4.5	The displayed interpolated tumor volume.	81
4 6	System Architecture of the proposed method	82

5.1	The accuracy of slice 12 in series 126_21.	
	Left is the original tumor image, middle is	
	the interpolated tumor image and right is	
	the difference image	95
5.2	The accuracy of slice 16 in series 126_21.	
	Left is the original tumor image, middle is	
	the interpolated tumor image and right is	
	the difference image	95
5.3	The accuracy of slice 10 in series 126_26.	
	Left is the original tumor image, middle is	
	the interpolated tumor image and right is	
	the difference image	96
5.4	The accuracy of slice 2 in series 126_26.	
	Left is the original tumor image, middle is	
	the interpolated tumor image and right is	
	the difference image	96