

Ain Shams University
Faculty of Women
For Arts, Science and Education
Physics Department

Preparation and Characterization of Some Glass Ceramics

Thesis Submitted to Faculty of Women for Arts, Science, and Education- Ain Shams University

For the Ph. D. Degree of Science in Physics (Solid State Physics)

By
Mohamed Essam Sayed Bayomí
M. Sc. Physics

Supervision Committee

Prof. Dr. Hamdia Abd El-Hamid Zayed

Prof. of Solid State Physics
Physics Department
Faculty of Women for Arts, Science,
and Education
Ain Shams University

Prof. Dr. Mohamed Mahmoud ElOkr

Prof. of Solid State Physics Physics Department Faculty of Science Azhar University

Prof. Dr. Laila Ibrahim Soliman

Prof. of Solid State Physics Physics Division National Research Center

2020

Ain Shams University
Faculty of Women
For Arts, Science and Education
Physics Department

Preparation and Characterization of Some Glass Ceramics

THESIS SUBMITTED FOR THE Ph. D. DEGREE OF SCIENCE IN PHYSICS (SOLID STATE PHYSICS) By Mohamed Essam Sayed Bayomi

Supervision Committee

Prof. Dr. Hamdia Abd El-Hamid Zayed

Prof. of Solid State Physics
Physics Department
Faculty of Women for Arts, Science,
and Education
Ain Shams University

Prof. Dr. Mohamed Mahmoud ElOkr

Prof. of Solid State Physics Physics Department Faculty of Science Azhar University

Prof. Dr. Laila Ibrahim Soliman

Prof. of Solid State Physics Physics Division National Research Center

Date of Research: /	1
Approval Stamp:	Date of Approval: / / 2020
Approval of Faculty Council.	Approval of University Council.
/ / 2020	/ / 2020

NAME OF STUDENT: Mohamed Essam Sayed Bayomi

TITLE OF THESIS: Preparation and Characterization of Some Glass

Ceramics.

SCIENTIFIC DEGREE: DOCTOR OF PHILOSOPHY IN SCIENCE - PHYSICS

(SOLID STATE PHYSICS).

DEPARTMENT: PHYSICS

NAME OF FACULTY: FACULTY OF WOMEN FOR ARTS, SCIENCE, AND

EDUCATION.

UNIVERSITY AIN SHAMS.

B. SC. GRADUATION DATE: 2006, Ain Shams University

M. SC. GRADUATION DATE: 2014, Ain Shams University

Ph. D. GRADUATION DATE: 2020, FACULTY OF WOMEN FOR ARTS, SCIENCE,

AND EDUCATION - Ain Shams University

Contents

Contents

No.	Content	Page				
	Contents	i				
	List of figures	v				
	List of Tables	ix				
	Acknowledgment	X				
	Abstract	xi				
	PART ONE					
	Chapter one – Introduction					
1	Introduction	1				
1.1	Lithium containing glasses	1				
1.2	Copper containing glasses	2				
1.3	Glass-Ceramic materials	3				
1.4	Glass-Ceramic properties	3				
1.5	Scientific objective of the current investigation	4				
	Chapter Two – Theoretical Background					
2	Theoretical background	5				
2.1	Glass definition	5				
2.2	The enthalpy –temperature diagram	5				
2.3	Structural concepts of glass formation	7				

2.4	Glass-Ceramics	10
2.4.1	Nucleation	10
2.4.2	Crystal growth	12
2.5	Glass forming ability and glass stability	13
2.6	Structural models for phosphate glasses	13
2.7	X-ray diffraction (XRD)	14
2.8	Infrared spectroscopy	15
2.8.1	Theory of infrared absorption	17
2.9	Optical properties of glass	18
2.10	Electrical Properties Of Glass	20
2.10.1	dc electrical conductivity	20
2.10.2	ac electrical conductivity	22
2.10.2.1	Models of ac conductivity	23
2.10.2.1.1	Quantum mechanical tunneling	24
2.10.3	Dielectric constant	27
2.10.4	Polarization in dielectrics	28
	Chapter Three – Literature review	
3.1	Literature review of alkali phosphate glasses	31
	PART TWO	
	Chapter Four – Experimental techniques	
4	Experimental techniques	35

4.1	Glass preparation	35
4.2	X-ray diffraction analysis	36
4.3	Density and molar volume measurements	37
4.4	Transmission Electron Microscope (TEM)	38
4.5	Differential Thermal Analysis (DTA)	39
4.6	Infrared absorption measurements (FT-IR)	40
4.7	UV-visible absorption spectra measurements	41
4.8	Electrical measurements	42
	PART THREE – Results and Discussion	
Chant	ter Five - LITHIUM SODIUM PHOSPHATE GL	ASSES
5.1	X-Ray Diffraction (XRD)	44
3.1	A-Kay Dim action (AKD)	77
5.2	Density, molar volume and optical packing density	44
5.3	Differential thermal analysis (DTA)	47
5.4	Infrared absorption measurements (FTIR)	49
5.5	Optical properties	51
5.6	Electrical conductivity	55
5.6.1	dc electrical conductivity	55
5.6.2	ac electrical conductivity	57
5.6.2.1	Complex impedance analysis	58
5.6.2.2	Frequency and temperature dependence of ac electrical conductivity	60
5.6.2.3	Temperature and frequency dependence of dielectric constants ε' and ε"	65
C	hapter Six - COPPER DOPED LITHIUM SODIU	JM
	PHOSPHATE GLASSES	_
6.1	Phase diagram	72
6.2	X-ray diffraction (XRD)	73
6.3	High resolution TEM and electron diffraction	74
	Density (ρ), Molar volume (M _v), Molecular weight	
6.4	(M _w) and Oxygen packing density (OPD)	74

6.5	Deferential thermal analysis (DTA)	76
6.6	Fourier transform infrared (FTIR) analysis	78
6.7	UV-Vis analysis	79
6.8	Electrical Conductivity	84
6.8.1	dc electrical conductivity	84
6.8.2	ac electrical conductivity	86
6.8.2.1	Frequency and temperature dependence of ac	87
0.0.2.1	electrical conductivity	87
6.8.2.2	Temperature and frequency dependence of dielectric	94
0.0.2.2	constant ε' and ε''	94
6.8.2.3	Complex impedance analysis	99
	Summery and conclusion	102
	References	105
	الملخص العربي	113

LIST OF FIGURES

No.	Figure Caption	Page
1.1	Steps of glass-ceramic formation: a. Nuclei formation; b. Crystal growth on nuclei; c. Glass-ceramic microstructure.	3
2.1	Effect of temperature on the enthalpy of a glass forming melt.	7
2.2	Effect of temperature on the rates of nucleation and crystal growth for a glass forming melt.	12
2.3	Structures in P ₂ O ₅ glasses: (a) PO ₄ tetrahedron; (b) P ₄ O ₁₀ molecules.	14
2.4	XRD basic principle schematic diagram	15
2.5	Total degrees of freedom of a polyatomic atom	17
2.6	Illustration of the temperature dependence of dc conductivity expected for amorphous semiconductors	22
2.7	Frequency exponent s as a function of temperature for all mechanisms of ac conduction	27
2.8	Schematic representation of the different polarization mechanisms.	29
4.1	PANalytical X'Pert PRO diffractometer	37
4.2	Archimedes method to determine density.	38
4.3	JEOL:1200 EX II, JAPAN Transmission electron microscope.	39
4.4	SDT Q600 V20.9 DTA spectrometer	40
4.5	infrared spectrometer type, JASCO, FT/112 - 43, Japan	41
4.6	double beam Cary 100 spectrophotometer (model UV-12).	42
4.7	LCR bridge (Hioki, 3532-50).	43
5.1	XRD diffraction patterns of 55 P_2O_5 – (45-x) Na_2O – x Li_2O [0 \leq x \leq 35] glass samples at different composition of Li_2O (mol.%)	44
5.2	The variation of theoretical, experimental densities and molar volume with composition of Li ₂ O (mol %).	45

5.3	The variation of oxygen packing density and molar volume with composition of Li ₂ O (mol %).	46
5.4	DTA patterns of 55 $P_2O_5 - (45-x) Na_2O - x Li_2O [0 \le x \le 35]$ glass samples at different composition of Li ₂ O (mol.%).	47
5.5	FTIR spectra of the 55 $P_2O_5 - (45-x) Na_2O - x Li_2O [0 \le x \le 35]$ glasses at different compositions of Li ₂ O (mol.%).	49
5.6	structural unit of phosphate changes from $Q^3 \rightarrow Q^2 \rightarrow Q^1 \rightarrow Q^0$	50
5.7	Absorbance spectra of the 55 $P_2O_5 - (45-x)$ $Na_2O - x$ Li_2O $[0 \le x \le 35]$ glasses at different compositions of Li_2O (mol.%).	52
5.8	Absorption coefficient of the 55 $P_2O_5 - (45-x) Na_2O - x Li_2O$ $[0 \le x \le 35]$ glasses at different compositions of Li ₂ O (mol.%).	53
5.9	Variation of hv against $(\alpha hv)^{1/2}$ for 55 $P_2O_5 - (45-x) Na_2O - x Li_2O$ $[0 \le x \le 35]$ glasses at different compositions of Li ₂ O (mol.%).	53
5.10	Ln α versus h ν for 55 P ₂ O ₅ – (45-x) Na ₂ O – x Li ₂ O [0 \leq x \leq 35] glasses at different compositions of Li ₂ O (mol.%).	54
5.11	Optical energy gap and Urbach energy versus glass composition for 55 $P_2O_5 - (45-x)$ $Na_2O - x$ Li_2O $[0 \le x \le 35]$ glasses at different compositions of Li_2O (mol.%).	55
5.12	The variation of Ln σ_{dc} versus 1000/T for 55 $P_2O_5-(45\text{-}x)\ Na_2O-x\ Li_2O\ [0\leq x\leq 35]$ glass samples at different composition of Li ₂ O (mol.%).	56
5.13	The variation of activation energies ΔE_{dc1} and ΔE_{dc2} and σ_{dc} at room temperature with the composition of Li ₂ O (mol%).	56
5.14 (a)	Cole-Cole plots of Z' and Z" at 3 MHz of $55~P_2O_5-(45-x)~Na_2O-x~Li_2O$ glass containing 15 mol% Li_2O at different temperatures	58
5.14 (b)	Cole-Cole plots at 3 MHz and 453 K for different concentrations of Li ₂ O mol%	59
5.15	Frequency dependence of σ_{dc} for 55 $P_2O_5-(45\text{-}x)\ Na_2O-x\ Li_2O\ [0\le x\le 35]$ glasses at different temperatures	61
5.16	Temperature dependence of the frequency exponent S at different concentrations of Li_2O mol%	62

5.17	Temperature dependence of ac conductivity for	<i>(</i> 2
3.17	55 $P_2O_5 - (45-x) Na_2O - x Li2O [0 \le x \le 35]$ glasses at different frequencies	63
5.18	The variation of ac activation energies (a) ΔE_{ac1} and (b) ΔE_{ac2} with the concentration of Li ₂ O mol% at different frequencies	64
5.19	The temperature dependence of real part (ϵ ') of 55 $P_2O_5-(45-x)$ Na_2O-x Li_2O $[0 \le x \le 35]$ glasses at different frequencies	66
5.20	The temperature dependence of imaginary part (ϵ '') of 55 $P_2O_5 - (45-x)$ $Na_2O - x$ Li_2O [$0 \le x \le 35$] glasses at different frequencies	67
5.21	Frequency dependance of imaginary part (ϵ ') 55 P_2O_5 – (45-x) Na_2O – x Li_2O [0 \leq x \leq 35] at different temperatures	69
5.22	Temperature dependance of the investigated glasses for exponent m at different concentrations of Li ₂ O mol%	70
6.1	Phase diagram for (a) Ternary 55 $P_2O_5 - (45-x) Na_2O - x Li2O$ [0 \leq x \leq 35 mol%] and (b) Quaternary (55 - x) $P_2O_5 - 30 Na_2O - 15Li_2O - (x) CuO$ [0 \leq x \leq 1 mol%] systems	72
6.2	XRD pattern for $(55 - x)$ $P_2O_5 - 30$ $Na_2O - 15Li_2O - (x)$ CuO $[0 \le x \le 1 \text{ mol}\%]$ system (a) before and (b) after annealing at 623K for 14 hours	73
6.3	TEM and electron diffraction pattern for $(55-x)$ P_2O_5-30 $Na_2O-15Li_2O-(x)$ CuO system (a) $x=0\%$ as prepared, (b) $x=0\%$ after annealing, (c) $x=1\%$ as prepared and (d) $x=1\%$ after annealing at 623K for 14 hours	74
6.4	DTA curves for $(55-x)$ P_2O_5-30 $Na_2O-15Li_2O-(x)$ CuO system where $[0 \le x \le 1]$	76
6.5	FTIR spectrum for $(55 - x)$ P ₂ O ₅ - 30 Na ₂ O - 15Li ₂ O - (x) CuO system where $[0 \le x \le 1]$	78
6.6	Alpha versus wavelength for (a) as prepared, (c) after annealing at 623K for 14 hours, (b) $(\alpha h \upsilon)^{1/2}$ and (d) $(\alpha h \upsilon)^2$ versus h υ and the insets show the variation of optical energy	81