APPLICATION STUDIES OF NANOTECHNOLOGY FOR ENHANCING QUALITY AND SAFETY OF SOME FOOD PROUDECTS

By

IBRAHIM AMIN IBRAHIM AMIN

B.Sc. Agric. Sc. (Food Science and Technology), Fac. Agric., Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of

The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Food Science and Technology)

Department of Food science and Technology

Faculty of Agriculture

Ain Shams University

Approval Sheet

APPLICATION STUDIES OF NANOTECHNOLOGY FOR ENHANCING QUALITY AND SAFETY OF SOME FOOD PROUDECTS

By

IBRAHIM AMIN IBRAHIM AMIN

B.Sc. Agric. Sc. (Food Science and Technology), Fac. Agric., Ain Shams University, 2012

This Thesis for M.Sc. Degree has been approved by:

Date of Examination: 29 /12 / 2019

Dr. Hassan Hassan Aly Khalaf Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Benha University. Dr. Nagwa Mousa H. Rasmy Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University. Dr. Hamdy Mostafa Mohamed Ebeid Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University,

APPLICATION STUDIES OF NANOTECHNOLOGY FOR ENHANCING QUALITY AND SAFETY OF SOME FOOD PROUDECTS

By

IBRAHIM AMIN IBRAHIM AMIN

B.Sc. Agric. Sc. (Food Science and Technology), Fac. Agric., Ain Shams University, 2012

Under the supervision of:

Dr. Hamdy Mostafa Mohamed Ebeid

Prof. Emeritus of Food Science and Technology, Depart. of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Yasser Fikry Mohammed Kishk

Prof. of Food Science and Technology, Depart. of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Abdel Fattah Abdel Kareem Abdel Fattah

Associate Prof. of Food Science and Technology, Depart. of Food Science, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Ibrahim Amin Ibrahim: Application Studied of Nanotechnology for Enhancing Quality and Safety of Some Food Products. Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain-Shams University, 2020

The present study was conducted to prepare nano-chitosan particles (CN) by ultrafine grinding from crude chitosan powder (CC) using a ball mill. Physical, functional, rheological properties, antioxidant, antiradical characteristics DPPH', radical scavenging activity, ferric reducing antioxidant power FRAP, reducing power of nano-chitosan solutions were determined in comparison to crude chitosan solutions. In addition, the effect of different concentrations of crude chitosan and nanochitosan on Prepared chilled chicken burger samples (physicochemical, microbiological analysis, cooking quality and sensory characteristics) were determined during storage at (4±1°C) for 15 days. The results revealed that ultrafine grinding has effectively milled the chitosan particles to nanoscale. Prepared chitosan nanoparticles were characterized by X-Ray Diffraction (XRD), Zetasizer particle sizes and zeta potential (after milling for 30, 60 and 90 minutes). The particle size of nanochitosan was distributed in a range of 250-600 nm. With a polydispersity index <1. The particle electric charge was increased to the level of +24 to +33 mV. X-ray diffractogramms showed lower intensity and a shift in the peak to the lower 2° θ angle due to the charge in particles cristllinity. The nano-chitosan solutions were superior in their emulsifying and foaming properties compared to crude chitosan solutions where CN90 was the best followed by CN60 then CN30, finally CC at different pH values 3, 5, 7, 9. Also, in model casein system the CC or CN does not have the ability to form foam in all pH values. Also, seen with decreasing the nanoparticles size lead to improve the foaming activity index and foam stability index. The rheological parameters from power law at 25 °C were obtained using a rotational coaxial viscometer. The results showed that the studied polymer solutions exhibited non-Newtonian behavior with shear-thinning.

Form the obtained data it can be concluded that the CC, CN30, CN60 and CN90 had antioxidant activity. The CN solutions have more potential radical scavenging activity than CC solutions reached to 97% at 9 mg/ml. The highest FRAP value was observed at concentration 9mg/ml for CN90 at holding time 90 min. Also, CN90 showed high potential reducing power. The antibacterial activities of chitosan and nano-chitosan were examined against two gram-negative bacteria (Escherichia coli O157:H7 and Salmonella typhimurium), gram-positive bacteria two (Staphylococcus aureus and Bacillus cereus), and one yeast strain Candida albicans) by the paper disc diffusion technique. In general, the solutions of chitosan were more effective on Gram-positive bacteria than Gram-negative ones. Also, the results showed that yeast strain Candida albicans was the most sensitive tested microorganisms and the effect of CN30, CN60 and CN90 was stronger than CC. Formulation of chitosan into nanoparticles form was found to increase its antifungal effect significantly. The most sensitive fungal strain was Aspergillus niger and the most effective solutions were CN60 and CN90, while the least active one was CC solution. Chicken burger samples were prepared by adding 0.1% CC (T1), 0.2% CC (T2), 0.1% CN30 (T3), 0.2% CN30 (T4), 0.1% CN60 (T5), 0.2% CN60 (T6), 0.1% CN90 (T7) and 0.2% CN90 (T8). The effects of adding various levels of CC and CN as natural antimicrobials and antioxidants additives on keeping different quality and safety attributes of prepared chicken burger product were determined during storage at (4±1°C) for 15 days. The values of TVN, TBARs, WHC, pH, plasticity, were gradually and significantly increased (p≤0.05) during storage of different prepared chicken burger samples. Cooking loss of all chicken burger samples were showed significant increasing ($p \le 0.05$). Cooking yield of all samples of chicken burger were showed a remarkable significantly decrease (p≤0.05). Change in diameter (% shrinkage) at zero time of the samples: control, T1, T5, T6, T7 and T8 showed the highest reduction in diameter at zero time whereas after 15 days of cold storage samples of control and T1 showed the highest reduction. The values of total viable bacterial count (TC) were ranged from (3.49 to 3.82 log cfu/g) at the beginning of cold storage period. Samples containing chitosan nanoparticles (0.1and 0.2%) showed a progressive reduction in yeast and mold counts overtime during cold storage in comparison to control chicken sample. The presence of coliforms in all chicken burger samples under investigation were in the accepted limit and decrease progressively overtime during cold storage. For Sensory evaluation, the samples containing (0.2% CN) had higher scores compared with control sample. The results indicate the possibility of safe using nanoparticles of chitosan in food applications as a result of increased efficiency and use as an antioxidant and antimicrobial with reducing the amount used to deliver the desired purpose. Additional research is required to further investigate the potential value-added utilization of these chitosan derivatives in improving the quality and safety of food.

Keywords: nano-chitosan, wet ball mill, nanotechnology, apparent shear viscosity, chemical, Physical, rheological properties, antioxidant antimicrobial, chicken, and burger,

ACKNOWLEDGMENT

First, I would like to express my deep gratitude and thanks to **ALLAH**, the most merciful, all words of different language are unable to express my deepest thanks to ALLAH who gave me everything I have and gave the ability and patience to finish this work.

I had great honor that my work under the supervision of **Dr. Hamdy Mostafa Mohamed Ebeid,** Professor of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for valuable guidance, kind encouragements and his valuable efforts in reading and correcting the manuscript.

Sincere thanks and deepest gratitude to **Dr. Yasser Fikry Mohammed Kishk**, Professor of Food Science and technology,
Department of Food Science, Faculty of Agriculture, Ain Shams
University, for his guidance, his kind advice and in the completion of the practical work of the manuscript.

I would like to express my deep thanks to **Dr. Abdel Fattah Abdel Kareem Abdel Fattah**, Associate Prof. of Food, Science and Technology, Faculty of Agriculture, Ain Shams University, for his valuable advice and encouragement throughout this work and in the completion of the practical work of the manuscript.

Finally, my great thanks to **Dr. Khaled Fahmy Mahmoud,** Assistant professor Department of Food Science and Technology, National Research Centere, Dokki, Cairo, Egypt. support in this work and preparation nanoparticles in his lab.

Special thanks **Dr. Yehia Abdel Razek Heikal,** Professor of Food Science and technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for his support and follow it the work.

Special thanks to my mother, my father, my brothers, my sisters, my friends, and my big family.

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	X
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	7
2.1. Nanotechnology	7
2.1.1 Definition of nanotechnology	, 7
2.1.2 Nanotechnology in food sector	8
2.2. Chitosan	11
2.2.1.Chemical and biological properties of chitosan	11
2.2.1.1.Structure of chitosan	11
2.2.1.2. Solubility	11
2.2.2. Physical properties of chitosan	13
2.2.2.1. Physiochemical Properties of chitosan	13
2.2.3. Functional properties of chitosan	14
2.2.3.1. Emulsifying characteristics	14
2.2.3.2. Foaming properties	14
2.2.4. Antioxidant and antiradical characteristics	15
2.2.5. Chitosan and chitosan nanoparticles as antimicrobial	24
2.2.5.1. Chitosan as antimicrobial	24
2.2.5.2 Chitosan nanoparticles as antimicrobial	26
2.2.5.2.1 Antibacterial activity of chitosan nanoparticles	29
2.2.5.2.2. Antifungal activity of chitosan nanoparticles	31
2.2.6. Applications of nanotechnology in food sector	32
2.2.6.1. Applications of chitosan and chitosan nanoparticles	
in food sector	36
2.2.6.1.1. Effect of chitosan and chitosan nanoparticles in	
meat products	38
3.MATERIAL AND METHODS	42
3.1. MATERIALS	42
3.1.1 Chitosan	42
3.1.2. Chicken breast meat	42
3.1.3. Chemicals	42
3.1.4. Tested microorganisms	42
3.1.5. Media	43
3.1.5.1. Nutrient agar and broth media (Oxoid, 2006)	43
3.1.5.2. Potato dextrose medium (Oxoid, 2006)	43

	3.1.5.3. Baird parker agar base medium (Biolife2014)	43
	3.1.5.4 Violet red bile lactose agar medium (Oxoid, 2006)	44
	3.1.5.5. Bacteriological buffered peptone water	45
	3.1.5.6. Tetrathionate broth base medium (Oxoid, 2006)	45
	3.1.5.7. Xylose Lysine Desoxycholate (XLD) Agar medium	
	(Oxoid, 2006)	46
3	.2. METHODS	46
	3.2.1. Preparation of chitosan nanoparticles	46
	3.2.1.1. Steps of the milling Procedure	47
	3.2.2. Physical Characterization Techniques of chitosan	
	nanoparticles	48
	3.2.2.1. X- Ray powder diffraction (X-RD)	48
	3.2.2.2. Particle Size Measurement and particle size distribution	49
	3.2.3 Preparation of Chitosan – low molecular weight solution	
	or chitosan nano-particles solution	49
	3.2.4. Preparation of Buffers used for dissolution of chitosan	49
	3.2.4.1. Boric Acid-Borax Buffer	49
	3.2.4.2. Citrate-phosphate Buffer	50
	3.2.5. Functional properties	50
	3.2.5.1. Emulsifying activity index and emulsion stability	50
	3.2.5.2. Foam capacity and stability	51
	3.2.5.3. Color measurements of untreated chitosan and chitosan	
	nanoparticles powder	51
	3.2.5.4. Rheological properties	52
	3.2.5.4.1. Viscosity measurements	52
	3.2.6. Antioxidant and antiradical characteristics	53
	3.2.6.1 DPPH Radical scavenging activity	53
	3.2.6.2. Ferric Reducing Antioxidant Power	53
	3.2.6.3. Reducing power	54
	3.2.7. Preparation of inoculates	54
	3.2.7.1. Preparation of bacterial inoculates	54
	3.2.7.2. Preparation of yeast inoculates	54
	3.2.7.3. Preparation of fungi inoculates	55
	3.2.8. Antimicrobial activity	55
	3.2.8.1. Screening of the antimicrobial activity against bacterial	
	and yeast strains	55
	3.2.8.2. Determination of the minimal inhibitory concentrations	
	(MICs), bacteriostatic and bactericidal effects	56
	3.2.8.3. Determination of antifungal activity	56
	3.2.9. Food applications	57
	3.2.9.1. Preparation of chicken burger	57

3.2.9.2. Analytical methods	58
3.2.9.2.1. Chemical methods	58
3.2.9.2.1.1. Total Volatile Nitrogen (TVN)	58
3.2.9.2.1.2.Thiobarbituric acid reactive substances value	
(TBARs)	59
3.2.9.3. Physical parameters	59
3.2.9.3.1. Water holding capacity (WHC)	59
3.2.9.3.2. pH value	59
3.2.9.4. Cooking quality characteristics	60
3.2.9.4.1. Cooking yield %	60
3.2.9.4.2. Cooking loss %	60
3.2.9.4.3. Diameter Reduction	60
3.2.9.5. Microbiological analysis	60
3.2.9.5.1. Total plate counts (TPC)	60
3.2.9.5.2. Colony count of Coliform	61
3.2.9.5.3. Horizontal method for the detection of Salmonella	
spp.	61
3.2.9.5.3.1. Pre-enrichment	61
3.2.9.5.3.2. Selective Enrichment	61
3.2.9.5.3.3. Plating out and identification	61
3.2.9.5.4. Horizontal method for the enumeration of coagulase	62
positive Staphylococcus aureus	
3.2.9.5.5. Yeasts and Molds count	62
3.2.9.6. Sensory evaluation	62
3.2.9.7. Statistical analysis	63
4.RESULTS AND DISCUSSION	64
4.1. Physical Characterization of chitosan Nanoparticles:	<i>-</i> 1
4.1.1. V may differentian mattern of chiteson non-mentiales comples	64 64
4.1.1. X-ray diffraction pattern of chitosan nanoparticles samples	04
4.1.2. Effect of milling time on particle size, polydispersity and zeta potential of nano-chitosan	67
4.1.2.1. Particle size and polydispersity index (PDI) of nano	07
chitosan particles	67
4.1.2.2. Zeta potential of chitosan nanoparticles	70
4.2. Functional properties	72
4.2.1. Emulsifying activity index and emulsion stability	72
4.2.1.1.EAI and ESI of crude chitosan and chitosan Nano	12
fractions at different times and different pH values	72
4.2.2. Foaming capacity (FC) and foam stability (FS) of studied	, 2
crude chitosan and chitosan Nano fractions	79

4.2.3. Color measurements of untreated chitosan and chitosan	
nanoparticles powder:	83
4.3. Rheological properties of chitosan solutions	84
4.4. Antioxidant and antiradical characteristics	89
4.4.1. Effect of concentrations and times on the DPPH• Radical	
scavenging activity	90
4.4.2. Effect of concentrations and times on the Ferric reducing	
antioxidant power	93
4.4.3. Effect of concentrations and treatments on the reducing	
power	96
4.5. Antimicrobial activity of prepared crud and nano chitosan	0.7
solutions	97
4.5.1. Preliminary screening of antibacterial and yeast strains	97
activity 4.5.2. Determination of Minimum Inhibitory Concentration	91
(MIC)	99
4.5.3. Antifungal activity of crude chitosan and chitosan))
nanoparticles	100
1	102
4.5.4. Growth behavior of examined bacterial and yeast strains	
in presence of detected MICs values (mg/ml) of CC, CN	105
30, CN 60, and CN 90 solutions	105
4.6. Application of chicken burger4.6.1. Color parameter changes of raw and cooked chicken	112
burger samples during storage period at (4±1°C)	112
4.6.2. Chemical properties evaluation of chicken burger samples	112
prepared with different concentrations of crude chitosan	
and chitosan nanoparticles	125
4.6.2.1. Change in Total volatile nitrogen (T.V.N) values of raw	120
chicken burger samples	126
4.6.2.2. Change in Thiobarbituric acid reactive substances	
(TBARs) values of raw chicken burger samples	128
4.6.3. Physical characteristics of chicken burger samples	
prepared with different concentrations of crude chitosan	
and chitosan nanoparticles	130
4.6.3.1. Change in water holding capacity of raw chicken burger	
samples	131
4.4.3.2. Change in plasticity of raw beef burger samples	133
4.6.3.3. Change in pH values of raw chicken burger samples	135
4.6.3.4. Cooking quality characteristics of chicken burger	100
samples	136

4.7. Microbiological criteria of chicken burger samples prepared	
with different concentrations of crude chitosan and chitosan	1 / 1
nanoparticles	141
4.7.1. Total viable bacterial count (TVBC)	142
4.7.2. Yeast and Mold counts	144
4.7.3. Total coliform counts	145
4.8. Sensory characteristics of chicken burger samples prepared	
with different concentrations of crud chitosan and	
chitosan nanoparticles	147
4.8.1. Appearance	148
4.8.2. Color	149
4.8.3. juiciness	151
4.8.4. Odour	152
4.8.5. Taste	154
4.8.6. Tenderness	155
4.8.7. Overall acceptability	156
5. SUMMARY AND CONCLUSION	1.50
	159
6. REFFERENCE	173
7. ARABIC SUMMARY	1

LIST OF TABLES

No.		Page
1	Experimental condition for the preparation of chitosan nanoparticles	47
2	Amounts of Ingredients used in the chicken burger formulations	58
3	Emulsifying activity and emulsion stability indices (m ² g ⁻¹) of chitosan, and chitosan Nano fractions at different times and different pH values.	75
4	Emulsifying activity and emulsion stability indices (m ² g ⁻¹) of casein, chitosan, and chitosan Nano fractions in casein model system at different times and different pH values.	78
5	Foam capacity (FC) and foam stability (FS) (cm ³) of Egg albumin, chitosan, and chitosan Nano fractions in casein model system at different times and different pH values.	82
6	Color parameters of crude chitosan and its Nano-fractions	83
7	Consistency coefficient (K), flow behavior index (n) and apparent viscosity (μ a) of crude chitosan and three different nanoparticle solutions at pH 3, 5, 7 and 9	89
8	Radical scavenging activity (%) of crude chitosan and chitosan Nano fractions at different concentrations during different reaction times	92
9	FRAP (OD) of crude chitosan and chitosan Nano fractions	95
10	at different concentrations during different reaction times. Reducing power (OD) of different treated chitosan at different concentrations	97
11	Antimicrobial activity of crude chitosan against bacterial and Yeast strains	99
12	Antimicrobial activity of CN30 against bacterial and Yeast strains	100
13	Antimicrobial activity of CN60 against bacterial and Yeast strains	101
14	Antimicrobial activity of CN90 against bacterial and Yeast strains	101
15	Antifungal activity of crude chitosan against Fungal strains	104
16	Antifungal activity of CN30 against Fungal strains	104
17	Antifungal activity of CN60 against Fungal strains	104

18	Antifungal activity of CN90 against Fungal strains	105
19	Color parameter changes of raw chicken burger samples at zero-time storage period at (4±1°C).	114
20	Color parameter changes of raw chicken burger samples after 3 days' storage period at $(4\pm1^{\circ}C)$.	115
21	Color parameter changes of raw chicken burger samples after 6 days' storage period at (4±1°C).	116
22	Color parameter changes of raw chicken burger samples after 9 days' storage period at (4±1°C).	117
23	Color parameter changes of raw chicken burger samples after 12 days' storage period at (4±1°C).	118
24	Color parameter changes of raw chicken burger samples after 15 days' storage period at (4±1°C).	119
25	Color parameter changes of cooked chicken burger samples at zero time for storage period at $(4\pm1^{\circ}C)$.	120
26	Color parameter changes of cooked chicken burger samples after 3 days' storage period at $(4\pm1^{\circ}C)$.	121
27	Color parameter changes of cooked chicken burger samples after 6 days' storage period at $(4\pm1^{\circ}C)$.	122
28	Color parameter changes of cooked chicken burger samples after 9 days' storage period at $(4\pm1^{\circ}C)$.	123
29	Color parameter changes of cooked chicken burger samples after 12 days' storage period at (4±1°C).	124
30	Color parameter changes of cooked chicken burger samples after 15 days' storage period at (4±1°C).	125
31	Total volatile nitrogen (TVN) of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	127
32	Thiobarbituric acid reactive substances (TBARs) of chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}C)$.	129
33	Changes in Water Holding Capacity (WHC) of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	132
34	Changes in plasticity of chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}\text{C})$.	134
35	The pH values of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	135
36	Cooking loss (%) of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	137

VIII

37	Cooking yield (%) of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	139
38	Change of chicken burger diameter by cooking from storage period for 15 days (4±1°C).	140
39	Total mesophilic bacterial count (TMBC) of various chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}C)$.	142
40	Total psychrophilic bacterial count (TPBC) of various chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}C)$.	144
41	Yeast and mold counts (YMC) of various chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	144
42	Total coliform count of various chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}\text{C})$.	146
43	Means values of panelist appearance scores of chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}C)$.	149
44	Means values of panelist color scores of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	150
45	Means values of panelist juiciness scores of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	152
46	Means values of panelist odour scores of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	153
47	Means values of panelist taste scores of chicken burger samples as affected by different treatments and storage period for 15 days (4±1°C).	154
48	Means values of panelist tenderness scores of chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}C)$.	156
49	Means values of panelist overall acceptability scores of chicken burger samples as affected by different treatments and storage period for 15 days $(4\pm1^{\circ}\text{C})$.	157