The Association between Polymorphism in the ABCB1 Gene and Opioid Use Disorder in an Egyptian Sample

AThesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

By

Bishoy Mamdouh Waheeb

Dip NP, Faculty of Medicine -Ain Shams University

Under Supervision of

Prof. Nahla El Sayed Nagy

Professor of Psychiatry Faculty of Medicine - Ain Shams University

Dr. Mahmoud Mamdouh Elhabiby

Assistant Professor of Psychiatry Faculty of Medicine - Ain Shams University

Dr. Mohamed Hossam El-Din Abdel El-Moneam

Lecturer in Psychiatry
Faculty of Medicine - Ain Shams University

Ain Shams University Faculty of Medicine 2019

Acknowledgment

Thanks to GOD first and foremost. I am always thankful to GOD, the most good and the most merciful.

I also thank my wonderful supervisors;

Prof. Dr. Mahla & Sayed Magy, Professor of psychiatry, Ain Shams University,

Dr. Mahmoud Mamdouh Elhabiby, Assistant Professor of Psychiatry, Ain Shams University and

Dr. Mohamed Hossam & Din Abdel & Moneam, Lecturer of psychiatry Ain Shams University

for their insightful comments, encouragement and their kind guidance which has helped me during all the time of research and writing of this thesis. I also want to thank them for their financial support in this work.

Also thanks to **Dr. Mashwa ElXhazragy** for her constructive work and instructive comments and valuable suggestions.

Last but not the least; I would like to thank everyone for supporting me throughout writing this thesis.

Bishoy Mamdouh Waheeb

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	6
Review of Literature	
Addiction as A Brain Disorder	7
Human Molecular Genetics of Opioid Addiction.	37
Subjects and Methods	59
Results	76
Discussion	99
Limitations of the Study	119
Recommendations	120
Summary	121
References	124
Arabic Summary	

List of Tables

Table No.	Title P	age	No.
Table (1-1):	DSM-5 and DSM-IV Diagnostic Criteria		11
Table (1-2):	Location and Physiological Action	of	
Table (1-3):	Opiate Receptors	ls of	
Table (2-1).	the Different Stages of the Addiction Cy Types of mutations		
Table (2-2):	ABCB1 polymorphism meta-analysis regard to disease risk, pharmacokinetics	in	
	chemotherapeutic response		
Table (2-3):	analysis in regard to Neuropsychia	atric	
Table (2-4):	Frequency of C3435T (rs1045642) M analysis in regard On	leta-	57
	pharmacokinetics and dependence		58
Table (4-1):	Demographic Characteristics of Stugroups (Addicts / control)		
Table (4-2):	Descriptive statistics for addiction rel	ated	
Table (4-3):	parameters in patients group Distribution of ABCB1 gene polymorph C3435T (rs1045642) among addict	nism and	
Table (4-4):	_ · · · · · · · · · · · · · · · · · · ·	CB1	82
Table (4-5).	gene C3435T polymorphism genotype different age and gender of patients gro Comparative analysis for different AB	up	84
1 anie (4-9);	gene C3435T polymorphism genotype different phenotypes of addicts group	s in	85
Table (4-6):	Comparative analysis for different AB gene C3435T polymorphism genotype	CB1	
	different phenotypes of patients group.		87

List of Tables

Table No.	Title	Page	No.
Table (4-7):	Predictive value of ABCB1 gene C		
	polymorphism genotypes in Heroir		20
TD-1-1- (4.0)	Tramadol addiction		89
Table (4-8):	Distribution of addict patients accord the addiction severity index		
	the addiction severity index parameters		90
Table (4-9).	Physical Domain of the addiction se		90
1 able (4-0).	index in relation to the ABCB1	•	
	polymorphism among addict group	_	92
Table (4-10):	Occupational Domain of the add		
	severity index in relation to the A		
	gene polymorphism among addict gro	up	93
Table (4-11):	Addiction Domain of the addiction se	•	
	index in relation to the ABCB1	_	
	polymorphism among addict group		94
Table (4-12):	Legal Domain of the addiction se		
	index in relation to the ABCB1	_	0.5
Т-1-1- (4 19).	polymorphism among addict group		95
1 able (4-13):	Family Domain of the addiction se index in relation to the ABCB1	v	
	polymorphism among addict group	_	96
Table (4-14):	Social Domain of the addiction se		50
14610 (111)	index in relation to the ABCB1	•	
	polymorphism among addict group	_	97
Table (4-15):	Psychological Domain of the add		
	severity index in relation to the A		
	gene polymorphism among addict gro	up	98
Table (5-1):	Estimates of the prevalence of ultra	-	
	metabolisers (UM) of CYP2D6 in dif		
m 11 (7 °)	populations		108
Table (5-2):	PROOVE opioid risk (POR) test markers	-	115
	markers		тто

List of Figures

Fig. No.	Title Pa	ge No.
Figure (1-1):	Papaver somniferum	7
Figure (1-2):	Basic schematic of mesolimbic structu	re
J	and functional operations	16
Figure (1-3):	Sagittal section through a representati	ve
_	rodent brain illustrating the pathwa	ys
	and receptor systems implicated in the	he
	acute reinforcing actions of opioids	21
Figure (1-4):	Stages of the Addiction Cycle	26
Figure (2-1):	Minute mutations	38
Figure (2-2):	Mini- Scale Mutations	38
Figure (2-3):	Mutations affecting the physical order	of
	nucleotide sequences	39
Figure (2-4):	Mutations affecting the large area of or	ne
	chromosome	39
Figure (2-5):	Pattern of nucleotide substitution	41
Figure (2-6):	Sickle cell anemia caused by or	ne
	nonsynonymous substitution	42
Figure (2-7):	Long Term Opioid Exposure	52
Figure (3-1):	Schematic diagram of the 5' nuclea	se
	assay (Taqman Probe Assay)	68
Figure (3-2)	Amplification plot curve for homozygo	us
	CC of ABCB1 gene polymorphism	70
Figure (3-3)	Illustrated ABCB1 gene polymorphis	m
	negative controls amplification plot	
Figure (4-1):	Distribution of ABCB1 gene C3435	$5\mathrm{T}$
	polymorphism among opioid addicts ar	nd
	healthy control	82
Figure (4-2):	Distribution of C and T alleles of ABCI	
	gene C3435T polymorphism amou	
	opioid addicts and healthy control	83

List of Figures (Cont...)

Fig. No. Title Page N	0.
Figure (4-3): Distribution of ABCB1 gene C3435T	
polymorphism among males and females	84
in opioid addicts Figure (4-4): Distribution of ABCB1 gene C3435T	04
polymorphism among Tramadol and	
Heroin addiction in opioid addicts	86
Figure (4-5): Frequencies of addiction severity index	00
among opioid addicts	90
Figure (4-6): Physical Domain of the addiction	
severity index in relation to the ABCB1	
gene polymorphism among addict group	92
Figure (4-7): Occupational Domain of the addiction	
severity index in relation to the ABCB1	
gene polymorphism among addict group	93
Figure (4-8): Addiction Domain of the addiction	
severity index in relation to the ABCB1	
gene polymorphism among addict group	94
Figure (4-9): Legal Domain of the addiction severity	
index in relation to the ABCB1 gene	~ ~
polymorphism among addict group	95
Figure (4-10): Family Domain of the addiction severity	
index in relation to the ABCB1 gene	96
polymorphism among addict group Figure (4-11): Social Domain of the addiction severity	90
index in relation to the ABCB1 gene	
polymorphism among addict group	97
Figure (4-12): Psychological Domain of the addiction	
severity index in relation to the ABCB1	
gene polymorphism among addict group	98

List of Abbreviations

Abb.	Full term
6-MAM	. 6 monoacetylmorphine
A.D	ž -
	. Human ATP binding cassette genes
	.Anterior commissure
	.Anterior cingulate
	.Alcohol dehydrogenase
	.Aldehyde dehydrogenase
<i>AMG</i>	
	.American psychiatric association
	.Arcuate nucleus
BBB	.Blood Brain Barrier
BNDF	.Brain derived neurotrophic factor
BNST	.Bed nucleus of the stria terminalis
<i>CD</i>	. Caudate Nucleus
Cer	. Cerebellum
<i>CP</i>	. Caudate putamen
DA	. Dopamine
<i>DMT</i>	$. Dor some dial\ thalamus$
DNA	.Deoxyribonucleic acid
DSM-5	Diagnostic and Statistical Manual of Mental Disorder 5 th Edition
ECDD	. The WHO Expert Committee on Drug Dependence
<i>ENT</i>	. Entorhinal cortex
FC	. Frontal cortex
<i>GABA</i>	. γ-aminobutyric acid
<i>GHB</i>	. γ-hydroxy butyrate
	. Globus pallidus
<i>GPCRs</i>	.Gprotein – $coupledreceptors$

List of Abbreviations (Cont...)

Abb.	Full term
GWAS	. Genome Wide Association Studies
Hippo	. Hippocampus
HIV	.Human Immuno-deficiency virus
ICD- 10	$. International \ Classification \ of \ Diseases, \ 10^{th}$
	Revision
<i>IF</i>	.Inferior colliculus
<i>ITG</i>	.Inferior temporal gyrus
<i>IV</i>	. Intravenous
<i>LC</i>	.Locus coeruleus
<i>LH</i>	.Lateral hypothalamus
<i>LSD</i>	.Lysergic acid diethylamide
<i>M3G</i>	.Morphine-3-glucuronide
MAOIs	. Monoamine oxidase inhibitors
<i>MDMA</i>	. Methylenedioxymetamphetamine
MDR1	.Multidrug Resistance gene 1
<i>MGL</i>	. Methionine gamma-lyase
<i>mPFC</i>	. Medial prefrontal cortex
<i>NA</i>	.Nucleus accumbens
NIDA	.National Institute on Drug Abuse
<i>ODT</i>	. O-desmethyl metabolite of tramadol
OFC	. Orbitofrontal cortex
	. Delta-opioid receptor
	. kappa-opioid receptor
	$. Nociceptin / orphanin \ FQ \ receptor$
	.Mu-opioid receptor
OT	•
	. Periaqueductal gray
<i>PENK</i>	

List of Abbreviations (Cont...)

Abb.	Full term
<i>P-gp</i>	P $Gly coproteins$
<i>POMC</i>	Pro-Opiomelano cortin
<i>POR</i>	Proove Opioid Risk
Pos	Prescription opioids
<i>RPn</i>	Reticular pontine nucleus
<i>RR</i>	Respiratory rate
SAMHSA	Substance Abuse and Mental Health Services
	Administration
<i>SC</i>	Superior colliculus
<i>SNP</i>	Single nucleotide polymorphism
<i>SNr</i>	Substantia nigra pars reticulata
SNRIs	Selective serotonin/norepinephrine reuptake inhibitors
SSRIs	Selective serotonin reuptake inhibitors
STG	Superior temporal gyrus
STR	Short tandem repeat
Thal	Thalamus
<i>VP</i>	Ventral pallidum
VS	Ventral striatum
VTA	Ventral tegmental area

Introduction

Addiction is a chronic, relapsing disease that changes the brain's reward circuit and hence leads to compulsive drug seeking and other behavioral changes. On the long term, there are biological effects of repeated drug exposure, which cause adverse effects throughout the body. Despite these catastrophic consequences, prevalence rate remains high. A study in 2016, done by the national addiction research program in Egypt revealed that about one fifth (19.1%) of the studied sample was regularly using an addicted substance regardless tobacco smoking. As regards the used substances, opioids were the 3rd common substance of use in Egypt after Cannabis and alcohol respectively, except in Upper Egypt where the opioids were commoner than alcohol (*Hamdi et al.*, 2016).

Opioids are a category of drugs which promote rewarding and anti-nociception effects by acting at opioid receptors in the central and peripheral nervous systems (*Henderson et al., 2016; Fornasari, 2012*). Their actions are mediated through binding to opioids receptors $Mu(\mu)$, Kappa(κ) and delta (δ) (*Narita et al., 2001*). They are found throughout the brain and are varied in concentration according to their classification, however they all are much distributed in the ventral tegmental area, amygdala, nucleus accumbens, caudate and putamen nuclei (*Hancock et al., 2018; Mansour et al., 1987*). Endogenous opioid peptides, including enkephalins, β -

endorphins, endomorphins and dynorphins, are mediated by their binding to opioid receptors, modulating mood and regulating stress Responses (Contet et al., 2004).

Tramadol which is a synthetic opioid, is a centrally acting analgesic with a multimode of action. It acts on noradrenergic nociception, serotonergic and while its metabolite O-desmethyltramadol acts on the μ-opioid receptor. Its analgesic potency is claimed to be about one tenth that of morphine. Tramadol is used to treat both acute and chronic pain of moderate to moderately severe intensity (Grond & Sablotzki, 2004).

Abuse of tramadol is increasing in some African and West Asian nations. Abuse of tramadol is grown in Egypt, Gaza, Jordan, Lebanon, Libya, Mauritius, Saudi Arabia and Togo. Because of expanding rate of abuse, Egypt has upscheduled tramadol in 2009 (36th ECDD, 2014).

According to an Egyptian study of opioid dependence carried out on 700 male university students, they found that out of 100 students who were opioid users, 88 students used tramadol and 12 used heroin (Mahgoub et al., 2016). Also an Egyptian study carried out on 204 school students, among them, 18 (8.8%) were using tramadol as shown by urine screen (*Bassiony et al.*, 2015).

Dopamine, which is the primary neurotransmitter responsible for eliciting feelings of euphoria and pleasure, is the main component of the mechanism of dependence. It works in conjunction with the opioid peptides and receptors to stimulate the dopaminergic pathway that is required for dopamine transmission (Kalivas, 2009). The release of GABA, an inhibitory neurotransmitter also identified in this pathway, is decreased when opioid agonists bind to presynaptic mu-opioid receptors of (GABA)-ergic interneurons (Contet et al., 2009). The inhibition of GABA-ergic neurons via activation of the mu-opioid receptor allows dopaminergic neurons to release more dopamine into the reward pathway, creating a positive reinforcement of pleasurable feelings (Kalivas, 2009).

Approximately 40-60% of the vulnerability to addiction of opioids is attributed to genetic factors (Farah et al., 2017; Kreek et al., 2012; Bikash et al., 2016). The mu-opioid receptor (MOPr) is the primary site of action of several of the endogenous opioid peptides. This receptor is also the major target for clinically important opioid, as well as a major site of action for tramadol (Nurnberger and Berrettini, 2012; Henderson et al., 2016; Zadina et al., 1999). The opioid receptor µ 1 (OPRM1) gene, located on chromosome 6 (Kapur et al., 2007), is responsible for encoding the μ opioid receptor, which has been implicated in respiration, gastrointestinal motility, physical dependence, euphoria, and analgesia. It was shown to be involved in substance addiction, including

alcoholism and opioid addiction (Miller, 2013; Bond et al., 1998).

wide association studies (GWAS) Genome identified several single nucleotide polymorphisms (SNP) that are associated with opioids dependence (Hancock et al., 2018). There were two SNPs of high allelic frequency, each of which alters an amino acid in the N-terminus of the receptor. The 17T (rs1799972) variant results in an amino acid change of alanine to valine at position 6 (A6V) (overall allelic frequency 6.6%), and the A118G, variant, with allelic frequency range around 2% in African-Americans to over 40% in Japanese (Kreek et al., 2012). The most studied polymorphism of OPRM1 is the functional 118A>G (rs1799971) which is present in 5-30% of the general population with some racial variation (Tan et al., 2003) encoding for a substitution of aspartic acid for an asparagine Asn40Asp that results in the removal of a potential N-glycosylation site from the N terminal extracellular domain of the receptor (Bond et al., 1998).

The ABCB1 gene (formerly called MDR1) is located on chromosome 7. it is highly polymorphic and codes for the production of an ATP-dependent drug efflux pump for xenobiotic compounds with broad substrate specificity. It is responsible for decreased drug accumulation in multidrug resistant cells (Salagacka, 2011). One of the most extensively studied of the ABCB1 polymorphisms is the silent single nucleotide polymorphism (SNP) C3435T (rs1045642), located

in the middle of exon 26, the consequence of which is the alteration of the nucleotide, from cytosine to thymine. It is important to emphasize that the T allele of this polymorphism occurs with a high prevalence in the Caucasian population (about 50%) and its frequency is influenced by ethnicity (Jelen et al., 2015). An Austrian study published in 2013 had indicated a potential contribution of ABCB1 SNPs to the development of opioid addiction in the European population (Beer et al., 2013).

Our study will evaluate the possible role of ABCB1 gene polymorphisms and its association with opioid (heroin & tramadol) use disorder as there are no studies in the literature cover this field of research.