Evaluation of The Potential Role of miR-214 in Osteoporosis via Osterix

Thesis

Submitted for *the* Partial Fulfillment of MD in Medical Biochemistry and Molecular Biology

Nesma Mohamed Fawzy Mostafa

M.B.B.Ch of General Medicine and Surgery – Ain Shams University Assistant Lecturer at Medical Biochemistry and Molecular Biology Department

Under Supervision of

Prof. Dr./ Magda M. Nagaty

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine, Ain Shams University

Dr./ Enas Samir Nabih

Assistant Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine, Ain Shams University

Dr./ Radwan Gamal El-Deen

Lecturer of Orthopedic Surgery
Faculty of Medicine, Ain Shams University

Faculty of medicine
Ain Shams University
2019

First, and foremost, I feel always indebted to Allah, the Most Kind and the Most Merciful.

Thanks to Allah who lightened my path to become a humble student for a noble profession and granted me the ability to accomplish this work.

Words can never express my hearty thanks and indebtedness to **Prof. Dr. Magda M. Nagaty** Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her great support and continuous encouragement and guidance to complete this work. It was a great honor to work under her guidance and supervision.

My deepest appreciation and grateful thanks to **Dr. Enas** Samir Nabih, Assistant Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, continuous guidance, and constructive criticism. Her patience and objectivity in tolerating the revision of this study are very much appreciated.

I would like to express my deepest gratitude to **Dr. Radwan Gamal El-Deen** Lecturer of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, for his great support and help throughout the whole work.

Finally, I would like to express my sincere appreciation and grateful thanks to **Dr. Zeiad Mohamed Zakaria** Assistant Professor of Orthopedic Surgery, Faculty of Medicine, Ain shams University, for his extensive help and support during the practical aspect of this work, without which its completion would have been impossible.

List of Contents

Subject Pag	ge No.
List of Abbreviations	i
List of Tables	v
List of Figures	viii
Introduction	1
Aim of the Work	3
Review of Literature	
Osteoporosis	4
Osteoblast-specific transcription factor "Osterix"	38
miRNAs	45
miR-214	57
Subjects and Methods	64
Results	83
Discussion	110
Summary	120
Conclusion	122
Recommendations	123
References	124
Arabic Summary	–

List of Abbreviations

Abbrev. Full-term

ALP : Alkaline phosphatase

ATF4 : Activating transcription factor 4

AUC : Area under the curve

BGLAP : Gamma-carboxyglutamic acid-containing protein

BIRC7 : Baculoviral IAP repeat-containing protein 7

BMD : Bone mineral denisty

BMI : Body mass index

BMM : Bone marrow monocytes

BMPs: Bone morphogenetic proteins

BMSCs: Bone marrow mesenchymal stem cells

BSP : Bone sialoprotein

CatK : Cathepsin K

Collα1 : Collagen type I α1

CRP : C-Reactive Protein

CT scan : Computed tomography scan

CT : Threshold cycle

DEXA : Dual X-ray absorptiometry

DICER : An enzyme that in humans is encoded by the

DICER1 gene

Dlx5 : Distal-less homeobox 5

Dmp1 : Dentin matrix protein 1

Dnm3 : Dynamin-3 is a protein that in humans is encoded

by the DNM3 gene

dNTPs : Deoxyribonucleotide triphosphate

DROSHA : Class 2 ribonuclease III enzyme encoded by the

DROSHA gene

FC: Fold change

FN: False negatives

FP : False positive

FRAX : Fracture Risk Assessment

HCC: Hepatocellular carcinoma

HR-pQCT: High-resolution peripheral QCT

LMHF : Low magnitude high frequency

LRP5 : Low-density lipoprotein receptor-related protein 5

MDCT: High-resolution multidetector CT

MEKK2 : Mitogen-activated protein kinase kinase 2

miRNA : microRNA

MMP13 : Matrix Metalloproteinase 13

MRI : Magnetic Resonance Imaging

mRNA : Messenger RNA

MSCs : Mesenchymal stem or stromal cells

NFIC : Nuclear factor 1 C

NPV : Negative predictive value

nt : Nucleotide

OC : Osteocalcin

OD : Optical density

OP : Osteopontin

OPG : Osteoprotegerin

Osx : Osterix

PHEX: Phosphate regulating endopeptidase homolog X-linked

PKA : Protein kinase A

PKC : Protein kinase C

PPV : Positive Predictive Value

pQCT : Peripheral quantitative computed tomography

PSI: Pseudoshikonin I

Pten : Phosphatase and tensin homolog

PTH : Parathyroid hormone

QCT : Quantitative computed tomography

QUS : Quantitative ultrasonography

r : Pearson correlation

RANKL : Receptor activator of nuclear factor kappa-B ligand

RISC : RNA-induced silencing complex

RNAa : RNA-induced gene activation

RNAi : RNA interference

ROC : Receiver Operating Characteristics curve

RQ : Relative quantification

rRNA : Ribosomal RNA

RT : Reverse transcription

RT-PCR : Reverse transcription polymerase chain reaction

Runx2 : Runt-related transcription factor 2

Runx3 : Runt-related transcription factor 3

SATB2 : Special AT-rich sequence-binding protein 2

SCC : Squamous cell carcinoms

SD : Standard deviation

siRNAs : Short interfering RNAs

SMURFs : Smad ubiquitination regulatory factors

snoRNAs : Small nucleolar RNAs

snRNAs : Small nuclear RNAs

SOST : Sclerostin

STAT1 : Signal transducer and activator of transcription 1

TGFβ : Transforming growth factor beta

TN: True negative

TNF: Tumor necrosis factor

TP : True positive

tRNAs : Transfer RNAs

UBC9 : Ubiquitin-conjugating enzyme 9

UTR : Untranslated regions

UV : Ultraviolet

VDR : Vitamin D receptor

XBP1 : X-box binding protein 1

List of Tables

Table No.	Title Page No	•
Table (1): Table (2):	Major causes of secondary osteoporosis 12 WHO Diagnostic Classification of Osteoporosis	
Table (3):	Laboratory evaluation for secondary causes of osteoporosis	
Table (4):	RNA Types45	5
Table (5):	Mechanisms of gene regulation 50)
Table (6):	List of miRNAs dysregulated in serum of osteoporotic patients:	1
Table (7):	Reverse Transcription Reaction components:	5
Table (8):	Comparison between osteoporotic patients and controls regarding age	1
Table (9):	Comparison between osteoporotic patients and controls regarding gender	5
Table (10):	Comparison between osteoporotic group and controls regarding total leucocytic count, hemoglobin and platelets	7
Table (11):	Comparison between osteoporotic patients and controls regarding total calcium, ionized calcium, phosphorus, alkaline phosphatase and CRP)
Table (12):	Body mass index of the study participants 92	2
Table (13):	Comparison between study participants subdivided according to BMI categories 93	3

Table (14):	The expression of osterix in bone based on RQ value
Table (15):	The expression of miR-214 in bone based on RQ value
Table (16):	Pearson correlation between RQ value of osterix and clinical data of osteoporotic patients and controls
Table (17):	Pearson correlation between RQ value of osterix and laboratory parameters in osteoporotic patients and controls97
Table (18):	Pearson correlation between RQ value of miR-214 and clinical data in osteoporotic patients and controls
Table (19):	Pearson correlation between RQ value of miR-214 and laboratory parameters in osteoporotic patients and controls
Table (20):	Positivity rate (No of cases≤ cut off value) of osterix in bone samples in all studied groups
Table (21):	Sensitivity, specificity, predictive values and accuracy of detection of osterix gene by real time PCR in osteoporotic bone samples
Table (22):	Osterix positivity rates in bone tissue samples in relation to BMI of osteoporotic patients
Table (23):	Positivity rate (No of cases ≥cut off value) of miR-214 in bone samples in all studied groups

Table (24):	Sensitivity, specificity, predictive values and accuracy of detection of miR-214 gene by real time PCR in osteoporotic bone samples	108
Table (25):	miR-214 positivity rates in bone tissue samples in relation to body mass index of osteoporotic patients	109

List of Figures

Figure No	. Title Page N	Io.
Figure (1):	Mechanisms of action for OPG, RANKL, and RANK	. 16
Figure (2):	The role of parathyroid hormone in bone remodeling	. 19
Figure (3):	The anaboling action of PTH by recruiting bone marrow stromal cells (BMSCs) into the osteoblast lineage	. 19
Figure (4):	Scheme of direct actions of normal and increased levels of 1, 25(OH) ₂ D on bone	. 20
Figure (5):	Overview of antagomiR31 design, conjugation with nanoparticles and effect on cells, gold nanoparticles increased osterix expression and induced osteogenesis.	. 41
Figure (6):	miRNAs regulate osteoblast differentiation of MSCs by targeting key transcription factors such as osterix and runx2	. 42
Figure (7):	miRNA Biogenesis	. 48
Figure (8):	Genomic location of miR-214	. 57
Figure (9): Fl	ow chart showing method overview	. 67
Figure (10): I	Flowchart of total RNA extraction	. 69
Figure (11):	Steps of total RNA extraction including miRNA using miRNeasy kit (Qiagen, Hilden, Germany)	72
Figure (12):	Poly A tailing based RT-PCR	. 74

Figure (13A)	Representative amplification curves of osterix gene (purple) and ACTB housekeeping gene (violet) in bone samples of controls
Figure (14A)	Representative amplification curves of miR-214 gene (purple) and housekeeping gene (SNOR69) (Violet) of bone samples in controls
Figure (15):	Comparison between osteoporotic patients and controls regarding age 84
Figure (16):	Comparison between osteoporotic patients and controls regarding gender 85
Figure (17):	Comparison between osteoporotic patients and controls regarding total leucocytic count
Figure (18):	Comparison between osteoporotic patients and controls regarding hemoglobin concentration
Figure (19):	Comparison between osteoporotic patients and controls regarding platelets count 88
Figure (20):	Comparison between osteoporotic patients and controls regarding alkaline phosphatase
Figure (21):	Comparison between osteoporotic patients and controls regarding total calcium, ionized calcium, phosphorus and CRP91
Figure (22):	Comparison between osteoporotic patients and controls regarding BMI92
Figure (23):	Comparison between study participants subdivided according to BMI categories 93

Figure (24):	Comparison between osteoporotic patients and controls regarding RQ values of osterix
Figure (25):	Comparison between osteoporotic patients and controls regarding RQ values of miR-214
Figure (26):	Correlation between RQ value of osterix and BMI of osteoporotic patients96
Figure (27):	Correlation between RQ value of osterix and ionized calcium of osteoporoic patients
Figure (28):	Correlation between RQ value of osterix and CRP of osteoporoic patients 98
Figure (29):	Correlation between RQ value of osterix and RQ value of miR-214 of osteoporoic patients
Figure (30):	Correlation between RQ value of miR-214 and osteoporotic patients' age
Figure (31):	ROC curve analysis of osterix expression in bone samples
Figure (32):	ROC curve analysis of miR-214 expression in bone samples

Abstract

Background: The identification of genes associated with osteoporosis can help reveal underlying biological mechanisms that may lead to development of new therapeutic targets or biomarkers for early detection of the disease.

Aim of the study: to investigate the involvement of the osteoblast-specific transcription factor "osterix" and miR-214 in the pathogenesis of primary osteoporosis.

Patients and methods: the expression of osterix gene and miR-214 in the bone samples was evaluated using real-time-polymerase chain reaction in osteoporotic patients (n = 26) compppared to healthy controls (n = 14).

Results: The expression of miR-214 levels was significantly higher in the osteoporotic group as compared to the control group ($P \le 0.01$), on the other hand the expression of osterix level was significantly lower in the osteoporotic group as compared to the control group ($P \le 0.01$).

Conclusion:

Both osterix and miR-214 could have a potential role in the pathogenesis of primary osteoporosis.

KEYWORDS: Osterix, osteoporosis, miR-214,bone tissue