

IMPACT OF LEFT ATRIAL POSTERIOR WALL ISOLATION ON THE OUTCOME OF ABLATION OF PERSISTENT ATRIAL FIBRILLATION

Thesis

Submitted for Partial Fulfillment of Doctorate Degree of Cardiology

By

Ahmed Ibrahim Elbatran

MBBCh., MSc, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Mervat Abo El Maaty Nabih

Professor of Cardiology Faculty of Medicine – Ain Shams University

Prof. Dr. Rania Samir Ahmed

Professor of Cardiology Faculty of Medicine – Ain Shams University

Prof. Dr. Mazen Tawfik Ibrahim

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Ahmed Nabil Ali

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

Dr. Magdi Mohamed Saba

Senior Lecturer of Cardiology- Cardiology Clinical and Academic Group- St. George's University of London, United Kingdom

Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

First and foremost, I thank **Allah** for helping and guiding me in accomplishing this work.

I am greatly honored to express my deepest gratitude and thanks to **Professor Dr. Mervat Abo El Maaty Nabih,** Professor of Cardiology, Ain Shams University, for her kind guidance and support given throughout the course of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Magdi Mohamed Saba**, Senior Lecturer of Cardiology-Cardiology Clinical and Academic Group- St. George's University of London, United Kingdom, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Professor Dr. Rania Samir Ahmed,** professor of Cardiology, Ain Shams University, for her great help, active participation and guidance.

Grateful thanks to **Professor Dr. Mazen Tawfik Ibrahim**, Assistant professor of Cardiology, Ain Shams University, for his continuous guidance and constructive supervision.

I must extend my warmest gratitude to **Dr. Ahmed Nabil Ali,** Lecturer of Cardiology, Ain Shams University, for his constructive supervision, helpful advice and comments.

Special thanks to the **Electrophysiology group** at the Cardiology Department, Ain Shams University and the **Cardiology Clinical Academic Group**, St. George's University of London, including **Dr. Mark Gallagher, Dr. Anthony Li, Dr. Manav Sohal and Dr. Abhay Bajpai** for their great help to us throughout this work. I would also like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients who participated in this study.

Contents

Subjects	Page
List of abbreviations List of figures List of tables	IV
• Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	26
• Results	40
• Discussion	67
• Conclusion	74
• Recommendations	75
• Summary	76
• References	79
• Arabic Summary	

List of Abbreviations

Abbrev.	Full Term
AF	Atrial fibrillation
AFL	Atrial flutter
AI	Ablation Index
AOF	Atrio-oesophageal fistula
APD	Action potential duration
AT	Atrial tachycardia
AV	Atrioventricular
AVNRT	Atrioventricular Nodal Re-entrant Tachycardia
AVRT	Atrioventricular Reciprocating Tachycardia
BIFA	Box isolation of fibrotic areas
CBA	Cryoballoon ablation
CF	Contact force
CFS	Contact force sensing
CTI	Cavo-tricuspid isthmus
DE	Delayed enhancement
EAVM	Electro-anatomical voltage mapping
ECG	Electrocardiogram
ERP	Effective refractory period
FTI	Force-time integral
GP	Cardiac ganglionic plexi
LA	Left atrium
LAA	Left atrial appendage

List of Abbreviations

LAPW Left atrial posterior wall

LSPV Left superior pulmonary vein

LIPV Left inferior pulmonary vein

PAF Persistent atrial fibrillation

PVs Pulmonary veins

PVI Pulmonary vein isolation

QOL Quality of life

RA Right atrium

RF Radiofrequency

RFCA Radiofrequency catheter ablation

TOE Transoesophageal echocardiography

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Pulmonary vein isolation and approaches to left atrial posterior wall isolation.	14
<u>2</u>	Flowchart for the study design. 27	
<u>3</u>	Pulmonary vein antral isolation.	33
4	Posterior wall isolation using the box lesion set.	35
<u>5</u>	Entrance block into the posterior wall.	36
<u>6</u>	Point-by-point left atrial posterior wall ablation.	37
<u>7</u>	Posterior wall box isolation.	44
8	Demonstration of entrance and exit block to confirm posterior wall isolation.	46
9	Posterior wall isolation in a patient who developed perimitral flutter.	47
<u>10</u>	Perimitral flutter in the same patient as in figure 3.	48
<u>11</u>	Termination of atrial fibrillation during isolation of the left pulmonary veins	50
12	Comparison between the pulmonary vein isolation and posterior wall isolation groups regarding number of patients in sinus rhythm at 6 and 12 months after ablation	53
<u>13</u>	Atrial tachyarrhythmia-free survival in the PVI and PVI+ posterior wall isolation groups	54

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>14</u>	(A) Atrial tachyarrhythmia-free survival in patients without a mitral isthmus line in the PVI and Posterior wall isolation groups. (B) Atrial tachyarrhythmia-free survival in patients who underwent posterior wall isolation with and without a mitral isthmus line.	55
<u>15</u>	Atrial tachyarrhythmia-free survival in posterior wall box isolation and point-by-point ablation.	56
<u>16</u>	Pulmonary vein reconnection and reisolation.	58
<u>17</u>	Atrial tachycardia developing six months following posterior wall isolation.	60
<u>18</u>	Intracardiac tracings from the same patient as in figure 17.	61

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Baseline characteristics and procedure details of the whole study sample.	41
<u>2</u>	Patient characteristics, procedure details and antiarrhythmic therapy after ablation in the two groups.	43
<u>3</u>	Procedural complications.	52
4	Comparison between the two study groups regarding atrial tachyarrhythmia recurrence at six and 12 months.	53
<u>5</u>	Type of arrhythmia in patients with recurrence within 12 months according to procedure (group A vs group B).	57
<u>6</u>	Pulmonary vein reconnection in patients requiring redo ablation procedures.	60
7	Univariate regression analysis for predictive factors of recurrence in the whole study population.	63
8	Multiple regression analysis for different factors affecting recurrence in the whole study population.	64
<u>9</u>	Comparison between patients with and without recurrence of atrial tachyarrhythmia in group A.	65
<u>10</u>	Comparison between patients with and without recurrence of atrial tachyarrhythmia in group B.	66

Introduction

Atrial fibrillation (AF) is the commonest arrhythmia all over the world. In 2010, about 33.5 million humans were estimated to suffer from AF. ¹ The risk of thromboembolic events rises 4- to 5-fold with AF and the proportion of strokes attributable to AF increases steadily from 1.5% in the sixth decade to 23.5% in the ninth decade of life.²

The 2016 European Society of Cardiology guidelines for the management of AF advocate rhythm control therapy to improve symptoms in AF patients who remain symptomatic on adequate rate control therapy and give a class IIa (Level of Evidence C) recommendation for catheter ablation of persistent AF. ³ The initial description of pulmonary vein triggers initiating AF and that AF can be prevented by radiofrequency (RF) pulmonary vein isolation (PVI) has been a monumental discovery in the history of rhythm control in AF. ⁴ Since then, PVI has remained the cornerstone of AF ablation. ⁵

While the pulmonary vein isolation has yielded satisfactory outcomes in patients with paroxysmal AF, its long-term success rate has been suboptimal in cases with persistent AF. This has led to a long search for ancillary targets of ablation, including triggers and substrates. Over the

Introduction

last two decades, a multitude of ablation strategies have been developed and compared with PVI alone. ⁶

Extrapulmonary triggers of AF have been found in the coronary sinus (CS), left atrial appendage (LAA), superior vena cava (SVC), the crista terminalis, and the ligament of Marshall (LoM). ^{7–10}

Different sets of linear lesions have also been developed as adjuncts to PVI, including the 'roof line' connecting superior end of the PVI lesion sets and the mitral isthmus line. ^{11,12} Complex fractionated atrial electrograms (CFAEs), which are identified during fibrillation, may either indicate continuous re-entry of AF waves in a particular area or overlapping wavelets entering that region at different times. They have a short cycle length and their temporal and spatial distribution in humans is widely variable. ^{13,14} Recent trials have cast considerable doubt on the utility of both approaches. ^{15–17}

Similarly the initial enthusiasm for focal impulse and rotor modulation (FIRM) ablation^{18–20} has been tempered by the dismayingly poor outcomes in more recent trials. ^{21–23}

A novel attractive target for adjunctive ablation strategies is the left atrial posterior wall. The rationale is that the LAPW and the PVs are embryologically related. The developing left atrium (LA), progressively incorporates the single common PV into its wall, eventually resulting in four distinct PVs which enter the LAPW separately. The incorporated PVs form the smooth posterior wall of the LA. ²⁴ Anatomically, there is an abrupt change and discontinuity in LA subendocardial fibres as this bundle traverses the posterior LA between the PVs, which create a favourable substrate for re-entry. ²⁵ Moreover, the LAPW has been found to be a frequent source of non-PV triggers ⁹ as well as being a hub of autonomic activity, ²⁶ both of which contribute significantly to the initiation and stabilization of arrhythmia.

The so-called box ablation is derived from the Cox maze III surgical procedure.²⁷ It connects bilateral PV-encircling lesions by placing two linear lesion sets both superiorly on the roof and inferiorly at the bottom of the LA. In this way, the entire LAPW is believed to be isolated from the rest of the atria. ²⁸ An alternative approach is ablation or debulking of the left atrial posterior wall, pioneered by Natale and co-workers. While both approaches have shown promise in recent trials, ²⁸, ²⁹ the feasibility and efficacy has been the subject of controversy. ³⁰ It is thus of considerable importance to try and resolve this question, which can be a significant adjunct to the therapy of persistent atrial fibrillation, for which there is still no accepted standard of care.

Aim of the Work

This study assesses the impact of left atrial posterior wall isolation, in addition to pulmonary vein isolation, on the outcome of radiofrequency ablation of persistent AF.

Review of Literature

Atrial Fibrillation (AF) is the most common sustained arrhythmia encountered in clinical practice, and is associated with significant morbidity and mortality.³¹ The diagnosis of AF requires electrocardiographic rhythm documentation which shows irregular RR intervals with no distinct P wave lasting at least 30 seconds.³

AF has been classified according to the duration of the arrhythmia. These distinctions have been used in clinical research because of their prognostic and therapeutic implications when considering outcomes of catheter ablation.

Classification of AF according to duration, adapted from ESC and ACC/AHA/HRS guidelines ^{3,32}

Term	Definition
Paroxysmal AF (PAF)	AF which terminates within 7 days of
	onset, either spontaneously or with
	intervention. ^{3,32}
Persistent AF	Continuous AF which lasts for more than 7 days. 3,32
Long-standing persistent	Continuous AF which lasts for more
AF	than 12 months. ^{3,32}
Early persistent AF	Continuous AF which lasts for more

Review of Literature

	than 7 days but less than 3 months. The outcomes of AF ablation have been shown to be better in this subset of patients than in persistent AF of greater than 3 months' duration. ⁵
Permanent AF	Both the patient and their physician accept the presence of AF, restoring sinus rhythm is no longer attempted. As such, this term reflects a therapeutic decision and not a distinct pathophysiological entity. ⁵

Most patients presenting with paroxysmal, self-terminating AF will eventually progress to persistent or permanent AF. ^{33,34}

Therefore, paroxysmal and persistent AF can be viewed as presentations associated with different disease stages.

Ablation strategies for persistent atrial fibrillation

Catheter ablation is a successful therapy for eliminating AF and reducing the symptomatic burden in patients with this arrhythmia and is superior to pharmacological rhythm maintenance in persistent AF. ³⁵ Following the landmark STAR-AF II trial, a recent European