

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTOR

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

MENOUFIA UNIVERSITY
Faculty of Electronic Engineering
Department of Electrical Communications
Menouf

BIEVO.

VOICE AND DATA INTEGRATION OVER

MICROCELLULAR MOBILE RADIO
NETWORKS
11. Sharef

by

Saied M. Abd El-atty

(B.Sc.)

A Master Thesis Submitted in Partial Fulfillment of the Requirements for the M.Sc. Degree in Communications Engineering, Faculty of Electronic Engineering, Menoufia University.

SUPERVISORS: Dr. Mostafa Nofal

[Parostata Notal]

Assist. Prof., Dept. of Electrical Communications
Faculty of Electronic Engineering, Menoufia University

Dr. Nawal El-fishawy

[Name ElPishawg]

Lecturer, Dept. of Electrical Communications

Faculty of Electronic Engineering, Menoufia University

2000

MENOUFIA UNIVERSITY

Faculty of Electronic Engineering

Department of Electrical Communications

Menouf

VOICE AND DATA INTEGRATION OVER MICROCELLULAR MOBILE RADIO

by

NETWORKS

Saied M. Abd El-atty

(B.Sc.)

A Master Thesis Submitted in Partial Fulfillment of the Requirements for the M.Sc. Degree in Communications Engineering, Faculty of Electronic Engineering, Menoufia University.

APPROVED BY: Prof. Dr. Safwat Mahrous [5. Mdw]

Prof., Dept. of Electrical Communications
Faculty of Engineering, Ain Shams University.

Prof. Dr. Abd El-al O. Attia [A O Attia]

Prof., Dept. of Electrical Communications

Faculty of Electronic Engineering, Menoufia University

Dr. Sami EL- Dolil

[3. El-DeliL]

Assist. Prof., Dept. of Electrical Communications
Faculty of Electronic Engineering, Menoufia University

2000

MENOUFIA UNIVERSITY

Abstract

FACULTY OF ELECTRONIC ENGINEERING

DEPARTMENT OF ELECTRICAL COMMUNICATIONS ENGINEERING

A Master Thesis of

VOICE AND DATA INTEGRATION OVER MICROCELLULAR MOBILE RADIO NETWORKS

by Saied M. Abd El-atty

(B.Sc.)

A new concept is proposed for a dynamic length microcellular structure that has the potential to provide a communication link to all mobile users roaming in the service area. The implications of the system as well as its practical implementation are also addressed. Then, a queuing priority channel access protocol is presented for an integrated voice and data traffic on the air interface of a microcellular mobile radio network. As voice calls are time-critical and the interruption of a conversation is unbearable, the strategy aims at minimising this phenomenon. Data traffic, on the other hand, are served on a delay basis as the prompt delivery of data is not stringent. A methodology is developed for an accurate traffic modelling of the network when adopting the strategy. The traffic model is based on more realistic and sound concepts such as the evidently finite number of users roaming in a microcell as well as the impact of vehicular traffic flow on the traffic load. In addition, the effect of the hostile mobile radio channel on data transmission is considered. Handover traffic of both voice and data sources, handover priority, data queuing and the number of roaming mobile stations are accommodated in the model. The highway microcellular mobile radio network is considered as a case study. However, the analysis is fairly general to other microcellular scenarios. Performance metrics such as blocking, handover failure and service transfer to next microcell probabilities are derived from the state probability of the microcell base station. Numerical results are presented and discussed.

NOTE ON PUBLICATION

A paper extracted from the research work of the MSc thesis

<u>Paper title:</u> A Queuing Priority Channel Access Protocol for Voice/Data Integration on the Air Interface of Microcellular Mobile Radio Networks

Authors: Mostafa Nofal, Nawal. El-fishawy and Saied Abd El-etty

A paper is accepted and scheduled for oral presentation and publication in the proceeding of the IEEE Boston, Fall VTC'2000 conference, Sept. 24-28, 2000, paper # 39986.

Also Accepted for publication in the proceeding of the IEEE TENCON 2000 Kuala Lumpur, Sept. 25-27, 2000, paper # 390.

ACKNOWLEDGEMENTS

I want to express my gratitude to Dr. Mostafa who introduced me to innovative research and critical approach. His valuable advice, his professional and comprehensive guidance and his extensive knowledge enlightened my way in this research.

I would like to thank Dr. Nawal for helping me in collecting the background of the research and her good review.

Finally, I would like to thank my Professors and all friends in my Department.

CONTENTS

List of principle symbols	iv
1 Introduction	1
1.1 Objective of the thesis	2
1.2 Organization of the thesis	3
2 Overview of Mobile Radio Networks	5
2.1 Introduction	5
2.2 Evolution of mobile radio communication	6
2.2.1 The pre-prevailing stage	6
2.2.2 The first generation mobile systems	6
2.2.3 The second generation mobile systems	7
2.3 Traditional mobile radio system	8
2.4 The cellular concept	9
2.5 Frequency reuse and cochannel interference	10
2.6 Basic element of cellular mobile radio networks	12
2.6.1 Mobile switching center	13
2.6.2 Base station	
2.6.3 Mobile station	14
2.7 Mobile radio channel characteristics	14
2.8 Channel allocation schemes	17
2.8.1 Fixed Channel Allocation (FCA)	17

•	
2.8.2 Dynamic Channel Allocation (DCA) schemes	18
2.8.3 Hybrid assignment strategy	20
2.9 Microcellular structure	21
2.9.1 Highway microcellular layout	22
2.9.2 City street microcellular layout	22
2.9.3 Building microcellular layout	23
2.10 Mobility management in cellular mobile networks	23
2.10.1 Location update	23
2.10.2 Handover strategies	24
3 Teletraffic Theory for Cellular Mobile Radio Networks	29
3.1 Introduction	29
3.2 Principles of classical teletraffic theory	30
3.2.1 Some definition terms	
3.2.2 General birth-death process	
3.2.3 The loss system	
3.2.4 The delay system	
3.3 Teletraffic theory for cellular mobile radio networks	
4 Adaptive Microcellular Structure with	
A Dynamic Microcell Length	43
4.1 Introduction	43
4.2 Vehicular Traffic flow theory	44
4.2.1 Flow, Speed, and Density	
4.2.2 Level of service	
4.2.3 Headway distribution in highway traffic flow	
4.3 Layout characteristics of the microcellular structure	48
4.4 Impact of the vehicular traffic flow on the teletraffic demand	
4.5 Non-blocking highway microcells with dynamic length	
4.5.1 The Concept	
4.5.2 Practical implementation.	

5 A Queuing Priorit	y Channel Access
---------------------	------------------

Protocol for Voice/Data Integration	56
	56
5.1 Introduction	
5.2 A queuing priority channel access protocol	
5.3 Analytical model	59
5.3.1 Voice/ data arrival	
5.3.2 Channel holding time	63
5.3.2.1 Channel holding time of new requests	
5.3.2.2 Channel holding time of handover requests	
5.3.2.3 Average channel holding time	
5.4 Handover requirements probabilities	
5.5 State probability of a microcell base station	69
5.6 Performance evaluation metrics	71
5.6.1 The blocking probability of an attempted voice call	71
5.6.2 The queuing probability and average queue length	72
5.6.3 The failure probability of a handover voice attempt	72
5.6.4 The transfer probability of a new data attempt to the next microcell	73
5.6.5 The transfer probability of a handover data attempt to next microcell	73
5.7 Numerical results	
5.7.1 The effect of the microcell length	74
5.7.2 The effect of the reserved channels	77
5.7.3 The effect of queue on the voice attempts	81
5.7.4 The effect of service penetration rate	82
5.7.5 The effect of new data attempt rate per free user	85
6 Conclusion and future work	86
6.1 Recapitulation and Conclusion	86
6.2 future work	87
6.2.1 Integrated Terrestrial and Satellite Systems	87
Bibliography	88

LIST OF PRINCIPLE SYMBOLS

k : cluster size

CIR : carrier to interference ratio

γ : propagation path loss exponent

N : number of channels per microcell

 B_T : total frequency allocated of the network

 B_c : channel bandwidth

 D_{ν} traffic density on the road

 D_{jam} : traffic density under jam traffic

 Q_{ν} : traffic flow on the road

 V_s : space mean speed of vehicles

 V_f : space mean speed for free flowing

t_v: headway distance

 ζ : the service penetration rate (average number of active mobile stations)

L : microcell length

n : number of lanes per direction

 M_u average number of roaming mobile stations in a microcell

 T_{MV} : total duration of voice call

 T_{Md} : total duration of data request

 $\overline{T}_{Mv} = 1/\mu_{Mv}$: mean value of T_{MV}

 $\overline{T}_{\it Md} = 1/\mu_{\it Md}$: mean value of $T_{\it Md}$

 T_i : average residing time of a new user in the source microcell

 T_h : average residing time of a handover user since the last handover till the next microcell

 $\overline{T}_i = 1/\mu_i$: mean value of T_i

 $\overline{T}_h = 1/\mu_h$: mean value of T_h

 $F_{T_{Mv}}(t)$: the cumulative distribution function CDF of T_{Mv}

 $F_{T_i}(t)$: the cumulative distribution function CDF of T_i

 $T_{H\nu}$: the channel holding time of a new voice request

 T_{Hi}^{d}: the channel holding time of a new data request

 $F_{T_{Hi}}^{d}(t)$: the cumulative distribution function (CDF) of $\left.T_{Hi}^{d}\right.$

 $T_{Hh}v$: the channel holding time of a successfully voice handover request

Symbols

 P_{th}

V

$F_{T_{Hh}}^{ \nu}(t)$: the cumulative distribution function (CDF) of $T_{Hh}v$
T_{Hh}^{d}	: the channel holding time of a data handover request
$F_{T_{Hh}}^{}d}(t)$: the cumulative distribution function (CDF) of T_{Hh}^{d}
$P_{i\nu}$: probability that successfully established a voice attempt
P_{id}	: probability that successfully established a data attempt
P_{hv}	: probability that successfully voice handover may need
	further handover before completion.
P_{hd}	: probability that successfully data handover may need further
	handover before completion
α	: the fraction of the M_u mobile users that generate voice calls
β = (1- α)	: fraction of data mobile users.
λ_{iuv}	: the initiated voice call attempt rate per free user
λ_{iod}	: the initiated data attempt rate per free user
λ_{iud}	: the retransmitted initiated data attempt rate per free user
λ_{huv}	: the voice handover rate per free user
λ_{hod}	: the data handover rate per free user
λ_{hud}	: the retransmitted handover data attempt rate per free user
$P_e = 1 - P_{succ}$: probability of the data error transmission
\int_D	: Doppler frequency shift
arphi	: wavelength of the radio frequency carrier
S_{th}	: the receiver sensitivity threshold
T_p	: the packet transmission time
S_r	: the rms received signal level
$\overline{T}_H = 1/\mu_H$: the average channel holding time
μ_{qv}	: the departure rate by which a handover voice attempt will leave the queue
$\mu_{\it ed}$: the composite early departure rate
P_B	: the blocking probability of new voice attempts
P_q	: the queuing probability
L_q	: the average queue length
P_{fh}	: the failure probability of a handover voice attempt
P_{ti}	: the transfer probability of a new data attempt

: the transfer probability of a handover data attempt