

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

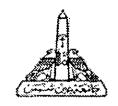
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


: حفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من 15-25 مئوية ورطوبة نسبية من 20-40% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

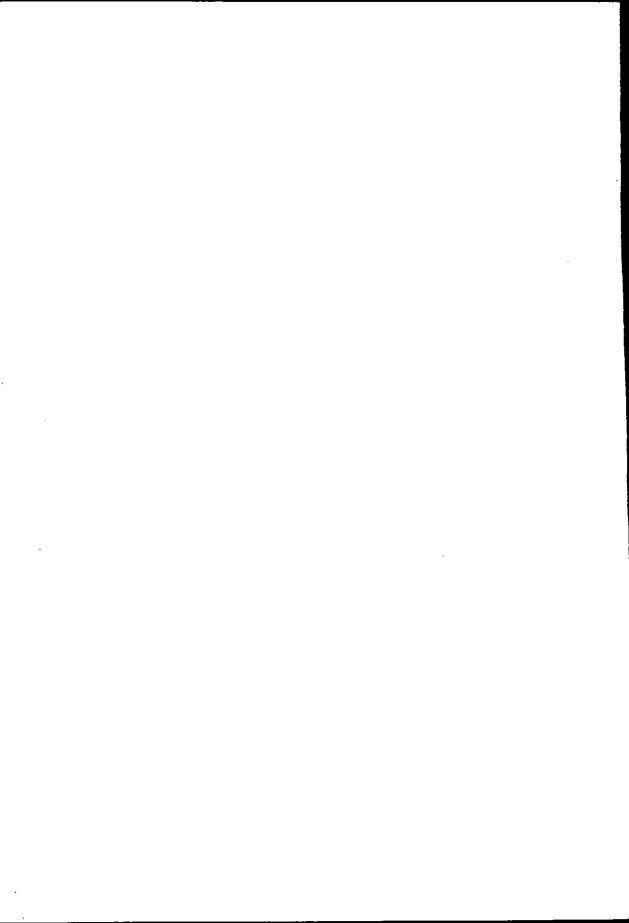
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

Ain Shams University Environmental Studies and Research Institute

MOSSES AS A BIOINDICATOR OF HEAVY METALS POLLUTION IN GREAT CAIRO.

By

MOHAMED OSMAN MOHAMED OSMAN


B.Sc. Faculty of Science (Botany), 1986, Assiut University, Diploma of the Institute of Environmental Studies and Research Ain Shams University, 1991

A thesis submitted in partial fulfillment

Of
The requirements for the master degree

In
Environmental Sciences
Department of Biological and Natural Sciences

Institute of Environmental Studies and Research Ain Shams University

Approval sheet

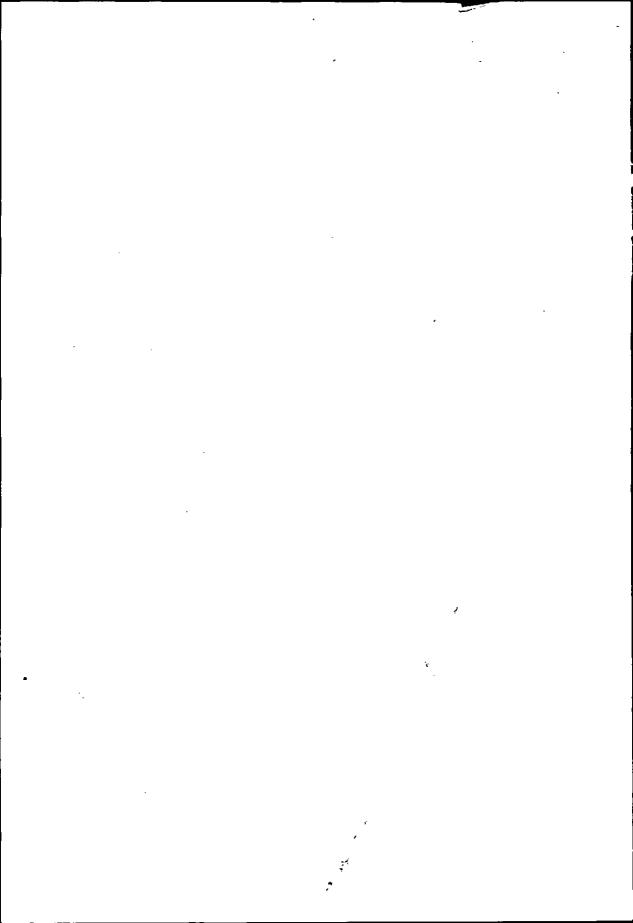
...

MOSSES AS A BIOINDICATOR OF HEAVY METALS POLLUTION IN GREAT CAIRO.

By

MOHAMED OSMAN MOHAMED OSMAN

This thesis for M.Sc. Degree has been approved by:


1- Prof. Dr. Mohamed Ahmed Hamouda. M. A. L. Q. Professor of plant Ecology, Ain Shams University, Faculty of Girls

2-Prof. Dr. Wagieh El-Sayed El-Saadawi. Wagich Stondard

3-Prof. Dr. Ahmed Salem El-Gobashy. A - S. Elghology. Professor of plant physiology, Ain Shams University, Faculty of Science

4-Prof. Dr. Nady Ahmed El-Bassuony Ghanem. Professor of Ecology of Cryptogams Al-Azhar University-Faculty of Science.

Date of examination 18/5/2000

Ain Shams University Environmental Studies and Research Institute

MOSSES AS A BIOINDICATOR OF HEAVY METALS POLLUTION IN GREAT CAIRO.

By

MOHAMED OSMAN MOHAMED OSMAN

B.Sc. Faculty of Science (Botany), 1986, Assiut University, Diploma of the Institute of Environmental Studies and Research Ain Shams University, 1991

Under supervision of:

Prof. Dr. Wagieh El-Sayed El-Saadawi.

Professor of Botany, Ain Shams University, Faculty of Science.

Prof. Dr. Nady Ahmed El-Bassuony Ghanem.

Professor of Ecology of Cryptogams Al-Azhar University-Faculty of Science.

Dr. Magdy Hassan Gamal Ishak

Lecturer in physiology, Nuclear Research Center, Atomic Energy Authority

ers -niv 0.0

bak

sity

6mi

ogy and

y of

γm

ម្ចាជ

ny iral

,9a.

oin.

AR.

્રતોદ

3iJ

 i^{i}

ACKNOWLEDGEMENTS

Praise and gratitude be to AllAH, the God of all creatures for helping me and directing me the right way.

Sincerely, I express my deepest thanks and grateful appreciation to *Prof. Dr. Wagieh El-Sayed El-Saadawi*, Professor of Botany, Faculty of Science, Ain-Shams University and *Prof. Dr. Nady Ahmed El-Bassuony Ghanem*, Professor of Ecology of Cryptogams, Faculty of Science, AL-Azhar University for suggesting the problem, active supervision, valuable advise, guidance and constructive criticism.

Cordial thanks are due to *Dr. Magdy Hassan Gamal Ishak*, Lecturer in physiology ,Nuclear Research Center, Atomic Energy Authority for offering facilities, valuable advise, guidance and continuous encouragement.

I wish to express my deepest gratitude to *Prof. Dr.* Samy Mohamed Aly El-Sayes ,Head of Biological and Natural Sciences Department , Institute of Environmental Studies and Researchs ,Ain Shams University for offering facilities .

Special thanks are due to staff members and all my colleagues in Botany and microbiology Department, Faculty of Science (for Boys) Al-Azhar University for hospitality in Ecology & Archegoniates Lab., for providing facilities and encouragement.

Also, I am sincerely thankful to *Dr. Usama Y. Abou Salama*, Lecturer in Botany, Faculty of Science, Ain-Shams University for the identification of the studied mosses.

Thanks are extended to all my colleagues and staff members in Botany Departments in Faculties of Science in both Ain-Shams and Al-Azhar (for Girls) Universities for providing facilities and encouragement.

I extend my deepest thanks and gratitude to my parents and my family.

ß.

li.

ity of neavy moss

ia and of 23

ti two

ABSTRACT

Name: Mohamed Osman Mohamed Osman

Title: Mosses as a bioindicator of heavy

metals pollution in Great Cairo.

Degree: Master of Environmental Biological

Science

Submitted to: Department of Biological and Natural

Sciences, Institute of Environmental

Studies and Research, Ain Shams

University.

This work is an attempt to investigate the suitability of Egyptian mosses as a bioindicator of air pollution of heavy metals in Great Cairo. For achieving this purpose, seven moss species belong to four genera: *Barbula*, *Bryum*, *Funaria* and *Physcomitrium* were collecting from one site or more of 23 selected sites distributed in five different regions in two provinces (Cairo & Qualiobiya) in Great Cairo

The present study included

- 1- Description and identification of the studied mosses .
- 2- Anatomy and morphology of the studied mosses.

- 3- Determination of the content of heavy metals (Pb, Cu, Zn, Cd, Mn & Fe) in plant tissue, soil substrate and water in the vicinity of the studied mosses as well as on the plant surfaces of these mosses.
- 4- Measurement of Leaf area index.

The study revealed the following:

- 1-A positive relation was found between the concentrations of some heavy metals in plant tissue and soil.
- 2-No obvious effect was observed on the anatomy and morphology of the studied mosses as a result of pollution by heavy metals.
- 3-The value of LAI for some species was in direct proportional with content of heavy metals in the different sites.
- 4–Comparison of the obtained results indicated that plant tissue analysis is the best procedure to indicate the suitability of bryophytes as a bioindicator for air pollution by heavy metals.

Key words: Mosses - bioindicator - Pollution - heavy metals.

LIST OF TABLES

	Page
Table 1: Heavy metal concentration (mg%) in plant tissue in the 23 sites.	59
Table 2: Heavy metal concentration (mg%) in soil substrate supporting the studied mosses in the 23 sites.	65
Table 3: Heavy metal concentration (mg/L) in water in the vicinity of the studied mosses in the 23 sites.	71
Table 4: Heavy metal concentration (mg%) on plant surface of the studied mosses in the 23 sites.	78
Table 5: Values of leaf area index (cm²) of the studied mosses in the 23 sites.	84
Table 6: The collected heavy metals (mg%) in plant tissue of the studied mosses in each site and region.	121
Table 7: Values of the heavy metals accumulation rat in the five studied regions.	ios 122
Table 8: Ratios between the investigated heavy metals in plant tissue in each of the 23 studied sites.	123
Table 9: Ratios between the investigated heavy meta in soil of each of the 23 studied sites.	ls 124
Table 10:The collected heavy metals (mg %) in soil substrate supporting the studied mosses in each site and region.	125
Table 11: The collected heavy metals (mg/L) in water in the vicinity of the studied mosses in each site and region.	126

S

ε

7

	Page
Table 12: The collected heavy metals (mg %) on the surface of the studied mosses in each site and region.	127
Table 13: Ratio of some of the heavy metals (Pb , Zn & Cd) in plant tissues, soil, water & on plant surface in the five studied regions compared to corresponding ratios in air and soil.	i 128
Table 14: Percentage of accumulation average of eac heavy metal in plant tissue, soil, water and on plant surface of all the studied mosses.	
Table 15: Accumulative results for plant tissue, soil, water and surface borne heavy metals in the five studied regions.	130
Table 1 6: Lead concentration in plant tissue, soil, water and on plant surface in the 23 studied sites.	131
Table 1 7: Copper concentration in plant tissue, soil, water and on plant surface in the 23 studied sites.	132
Table 18: Zinc concentration in plant tissue, soil, water and on plant surface in the 23 studied sites .	133
Table 1 9: Cadmum concentration in plant tissue, soil, water and on plant surface in the 23 studied sites .	134
Table 20: Manganese concentration in plant tissue, soil, water and on plant surface in the 23 studied sites .	135
Table 21: Iron concentration in plant tissue, soil, water and on plant surface in the 23	