

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Directional Overcurrent Relays Protection Schemes in Microgrids

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical and Machines Engineering

Prepared by: Bahaa Saad Mahmoud Bassuonie

M.Sc. in Electrical Power Engineering, Ain Shams University

Under Supervision of:

Prof. Dr. Ahmed Rizk Abul'WafaFaculty of Engineering –Ain Shams University

Assoc. Prof. Dr. Aboul'Fotouh A. MohamedHigher Institute of Engineering, El-Shorouk Academy

Cairo - Egypt 2020

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Directional Overcurrent Relays Protection Schemes in Microgrids

Ph.D. Thesis By:

Eng. Bahaa Saad Mahmoud Bassuonie

M.Sc. in Electrical Power Engineering, Ain Shams University

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Examination Committee

<u>Title, Name, and Affiliation</u>	<u>Signature</u>
Prof. Dr. Hassen Taher Dorrah Electrical Power Engineering Department Faculty of Engineering, Cairo University	
Prof. Dr. Tarek Saad Abdel-Salam Electrical Power & Machines Department Faculty of Engineering, Ain Shams University	
Prof. Dr. Ahmed Rizk Abul'Wafa Electrical Power & Machines Department Faculty of Engineering, Ain Shams University	

Cairo 2020

Date: 14/1/2020

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Directional Overcurrent Relays Protection Schemes in Microgrids

Ph.D. Thesis By:

Eng. Bahaa Saad Mahmoud Bassuonie

M.Sc. in Electrical Power Engineering, Ain Shams University

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Supervision Committee

<u>Title, Name, and Affiliation</u>	<u>Signature</u>
Prof. Dr. Ahmed Rizk Abul'Wafa	
Electrical Power & Machines Department.	
Faculty of Engineering, Ain Shams University	
Assoc. Prof. Dr. Aboul'Fotouh A. Mohamed	
Electrical Power & Machines Department	
Higher Institute of Engineering - El-Shorouk city	
El-Shorouk Academy	

Date: 14/1/2020

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirement for the Ph.D. degree in Electrical Engineering. The included work in this thesis has been carried out by the author at the Electrical Power and Machine department, Ain-Shams University. No part of this thesis has been submitted for a degree or a qualification at other universities or institutes.

Name: Bahaa Saad Mahmoud Bassuonie

Signature: Bahaa Saad

Date: 14 / 1 / 2020

AKNOWLEDGMENT

Thanks to ALLAH who gives us the power and hope to succeed.

Thanks, must go to Allah the creator of this universe who ordered us to study and explore his creations in order to know him better. However, as I come to understand more, I find that there is so much more knowledge to absorb and to get to grips.

I am honored to record my deepest sense of gratitude and thanks to **Professor Dr. Ahmed R. Aboul'Wafa**, for the efforts he had exerted to make it possible for me to make this research reality and for the help he gave, the many pieces of advice and the patience and the understanding he has shown throughout this work.

Thanks to *Professor Dr. Aboul'Fotouh A. Mohamed*, for the time and great help, enlightened many points, and efforts he had spent helping me during developing this thesis.

I would like to thank all staff members of the faculty of engineering – Ain Shams University that will grant me the degree of Doctor of Philosophy in Electrical Engineering.

There are no enough words to thank **my parents**, **my brother**, **my sister**, **and my wife** and my kind child (**Ahmed**), and my friends for the good family atmosphere, which helped in completing this thesis and encouragement during all time of hard work to complete it.

Bahaa Saad

ABSTRACT

The high reliable operation of an electrical system network depends on the proper coordination of its protective relays that protect this system. The improper outage of any part in the protected electrical systems will affect its reliable operation. Definitely, each portion in the protected zones has primary protection and backup protection for providing a high level of security.

Protection devices should be coordinated such that: primary protection will provide the first defense to clear the faulty section, and if it fails the backup protection should operate after a predefined coordination time interval to isolate the defective part without influencing the rest of the system.

Designing directional overcurrent relays (DOCRs) protection schemes mandatory needs the important following data: Three-phase short circuit currents from the short circuit analysis, load flow analysis, relay pairs identification, and the current transformer ratio (CTR). In this thesis work, the load flow and short circuit analysis are obtained using ETAP software, the relay pairs are identified using a LINKNET algorithm.

This thesis presents a solution to the problem of coordinating the (DOCRs) in Microgrids. The significant implementation of Microgrids challenged the protection engineers especially in designing protection microgrid schemes. This challenge comes from the bi-directional fault current variation and the dynamic behavior of these grids.

A proper solution is presented for solving the coordination problem of directional overcurrent relays (DOCRs) in microgrids based on two different methods. The first method is based on the meta-heuristic techniques, such as Genetic Algorithm (GA), Moth-flame optimizer (MFO), and the Coyote Optimization Algorithm (COA), with a new objective function to solve the problem of local minima because the coordination problem has an excessive number of unknowns' variables. The second method is an analytical iterative method that is presented for the first time and it is a promising solution for the coordination problem.

The proposed methods had been validated on the IEEE 8-bus System and 15-bus system Microgrid.

The proposed Microgrid is assumed to be operated in grid-connected mode and implemented with synchronous distributed generators that will cause high-level fault current during the fault occurrence.

MATLAB 2018b environment is used to simulate the proposed methods and algorithms to obtain the optimal settings for the coordinated (DOCRs) in Microgrids.

<u>Keywords:</u> Directional overcurrent relays coordination, Microgrids, protection schemes, Artificial intelligent, analytical techniques.

Table of Contents

AKNOWLEDGMENTi
ABSTRACTii
Table of Contentsiv
List of Figuresviii
List of Tablesx
List of Symbolsxi
List of Abbreviationsxii
Chapter One: Introduction1
1.1 General1
1.2 Protection Essential Requirements
1.3 DOCRs Protection Zones
1.4 Primary and backup protection
1.4.1 Primary protection5
1.4.2 Back-up protection6
1.5 Basic Principles of Electrical System Networks
1.6 Basic principles of Microgrids
1.6.1 Classification of Microgrids8
1.6.2 MG Operating Modes9
a) Grid Connected Mode9
b) Islanded Mode10
1.6.3 Importance of Microgrids
1.7 DOCRs Coordination Problem Statement
1.8 Thesis Objectives and Contributions
1.8.1 Objectives
1.8.2 Contributions
1.9 Thesis Hypothesis
1.10 Thesis Outlines

Contents

Chapter Two: Relay Pairs Identification15	
2.1 General	
2.2 LINKNET Algorithm	
2.2.1 Algorithm Procedure for Representing Network Topology 17	
2.2.2 Relay Pairs Results for IEEE 8 Bus System	
2.2.3 Relay pairs Results for IEEE 15 bus system (MG)	
Chapter Three: Short Circuit Analysis25	
3.1 General	
3.2 Short-Circuits Types	
3.3 Consequences of Short-Circuits	
3.4 Standardized Is. c Calculations	
3.5 Short Circuit Analysis Based ETAP Environment	
3.6 Short Circuit Analysis Results	
3.6.1 S.C Results, (Test Case: IEEE 8-Bus System)37	
3.6.2 S.C Results, (Test Case: IEEE 15-Bus System MG)	
Chapter Four: Directional Overcurrent Relays Coordination41	
4.1 General	
4.2 Objectives of Protection Schemes	
4.2.1 Selectivity	
4.2.2 Sensitivity	
4.2.3 Reliability	
4.2.4 Speed	
4.2.5 Simplicity	
4.2.6 Economic	
4.3 Directional Overcurrent Relay	
4.3.1 DOCRs and Bidirectional Power Flow	
4.3.2 Primary and Backup Relays	
4.3.3 Relay Characteristic Curve	
4.4 Coordination of Directional Overcurrent Relays	
4.5 Summary	

Chapter Five: Proposed Methods for DOCRs Coordination53		
5.1 General		
5.2 Methodologies of DOCR's coordination		
5.3 DOCRs Coordination Based AI Techniques		
5.4 DOCRs Problem Formulation		
5.5 Genetic Algorithm (GA)		
5.5.1 Basic Description of the Genetic Algorithm		
5.5.2 Protection Coordination Steps through Exploitation Genetic software		
5.5.3 Representing and initializing populations		
5.5.4 Roulette wheel selection:		
5.5.5 Reproduction		
5.5.6 mutation		
5.6 Moth-flame optimizer 64		
5.7 Coyote Optimization Algorithm		
5.8 Analytical Method for Directional Coordination		
5.8.1 Constraints of the Analytical Method74		
5.8.2 Proposed Procedure espoused to solve the protection coordination problem75		
Chapter Six: Simulation Results and Discussion78		
6.1 Parameter Settings and Test System Data		
6.2 Simulation Results-Based AI Techniques		
6.2.1 Objective Function		
6.2.2 Assumptions and Constraints		
6.2.3 Simulation Results (DOCRs Coordination Based (AI) Techniques for the IEEE 8-Bus System)		
Case (1): DOCRs Coordination-Based GA (Test Case:8-Bus System)		
Case (2): DOCRs Coordination-Based MFO (Test Case:8-Bus System)		
Case (3): DOCRs Coordination Based COA (Test Case:8-Bus System)		

Contents

6.2.4 Simulation Results (DOCRs Coordination based (AI) techniques
for the 15-Bus System MG)
Case (1): DOCRs Coordination Based GA (Test Case:15-Bus MG)
,
Case (2): DOCRs Coordination Based MFO (Test Case:15-Bus MG)
Case (3): DOCRs Coordination Based COA (Test Case:15-Bus MG)
6.2.5 Simulation Results for (DOCRs Coordination Based on an Analytical Technique for The IEEE 8-Bus System and 15-Bus MG). 102
6.3 Simulation Results Discussion
6.4 Conclusion
Chapter Seven: Conclusions and Future Work114
7.1 Conclusions
7.2 Future Work
References116
Appendices
Appendix A-1122
Appendix A-2
RESEARCHER DATA127
Publications
129 ملخص الرسالة
,

List of Figures

Figure No. Caption	Page No.
Figure (1-1): Division of Power Systems into Protection Zones	4
Figure (1-2): Overlapping Zones of Protection Systems	5
Figure (1-3): An Overall Electric Power System and Its Distribution System	. 7
Figure (1-4): Simple Schematic of a Microgrid	8
Figure (1-5): Ac Microgrid Block Diagram	9
Figure (2-1): Algorithm for Preparing LINKNET Structure for Any Network	k 19
Figure (2-2): Algorithm to Seek Out Primary-Backup Relay Pairs	20
Figure (2-3): 6-Bus Test System	21
Figure (2-4): IEEE 8-Bus Test System.	22
Figure (2-5): IEEE 15-Bus Test System (MG)	23
Figure (3-1): Various short circuit types and the direction of current	26
Figure (3-2): Initializing the Software and The Option of Creating or Openin	
Project	31
Figure (3-3): Short Circuit Analysis Button	32
Figure (3-4): Short Circuit Analysis Faulty Bus Selection	33
Figure (3-5): Standards Selection for Short Circuit Analysis	34
Figure (3-6): Run the Short Circuit Analysis	35
Figure (3-7): The Analysis Output Report Manager	36
Figure (4-1): Typical power/time relationship for various fault types	43
Figure (4-2): Radial System Feeds by Two Sources	45
Figure (4-3): Fault Current Direction Due to Fault (F1)	46 47
Figure (4-4): Fault Current Direction Due to Fault (F2)	
Figure (4-5): Parameters that Affect the DOCRs Characteristic Curve K, α , Figure (4-6): OCRs Coordination in Radial System	50
Figure (4-7): DOCRs Coordination in Ring System	51
Figure (5-1): Basic DOCRs Coordination Process	56
Figure (5-1): Biological Chromosome Background	60
Figure (5-3): Basic GA Code Steps [55]	62
Figure (5-4): The Spiral Flying Track Around Close Sources of Light	65
Figure (5-5): Spiral System, The Flame Space, and The Position Regards (t)	
Figure (5-6): Moth Locations with Respect to The Flame	68
Figure (5-7): shows how the flames are assigned to each Moth.	69
Figure (5-8): Number of Flames Is Decreased Adaptively Over the Iterations	
Figure (5-9): Flow Chart for The Analytical Method	77
Figure (6-1): Convergence Curve of the GA , (Test Case : 8-Bus System)	83
Figure (6-2): CTI Between (P/B) DOCRs based GA , (Test Case : 8-Bus Sys	
Figure (6-3): CTI Between Two DOCRs Based GA, (Test Case: 8-Bus Syst	
Figure (6-4): Convergence Curve of the MFO , (Test Case : 8-Bus System)	85
Figure (6-5): CTI Between (P/B) DOCRs Based MFO , (Test Case : 8-Bus S	
Figure (6-6): CTI Between Two DOCRs Based MFO, (Test Case: 8-Bus Sy	•

List of Figures

Figure (6-7): Convergence Curve of the COA , (Test Case : 8-Bus System)	88
Figure (6-8): CTI Between (P/B) DOCRs based COA , (Test Case : 8-Bus System)	88
Figure (6-9): CTI Between Two DOCRs Based COA, (Test Case: 8-Bus System)	89
Figure (6-10): Convergence Curve of the GA , (Test Case : 15-Bus System MG)	92
Figure (6-11): CTI Between (P/B) DOCRs based GA, (Test Case : 15-Bus System MG)	93
Figure (6-12): CTI Between Two DOCRs Based GA , (Test Case : 15-Bus System MG)	93
Figure (6-13): Convergence Curve of the MFO, (Test Case: 15-Bus System MG)	96
Figure (6-14): CTI Between (P/B) DOCRs based MFO, (Test Case: 15-Bus System MG	3)97
Figure (6-15): CTI Between Two DOCRs Based MFO, (Test Case: 15-Bus System MG	97 (
Figure (6-16): Convergence Curve of the COA , (Test Case : 15-Bus System MG)	100
Figure (6-17): CTI Between (P/B) DOCRs based COA, (Test Case: 15-Bus System MG	,
	101
Figure (6-18): CTI Between Two DOCRs Based COA, (Test Case: 15-Bus System MG)
	101
Figure (6-19): DOCRs Coordination at different CTI for 8-Bus system	102
Figure (6-20): DOCRs Coordination at different CTI for 15-Bus MG system	108
Figure (6-21): Convergence Curves of the Proposed AI Techniques	110
Figure (6-22): COA, Analytical Method Comparison-Based CTI for 8-Bus System	112
Figure (A-1): 8-bus IEEE interconnected System	123
Figure (A-2): Analytical Method Loops (Test Case: 8-Bus System)	123
Figure (A-3): 15-Bus System Micro-Grid scheme	125
Figure (A-4): Analytical Method Loops (Test Case: 15-Bus System MG)	126

List of Tables

Table No.	Caption	Page No.
Table (2-1):	Shows the Formation of Vectors LIST, IFAR, and NEXT	21
Table (2-2):	Relay Pairs of IEEE 8 Bus System	22
Table (2-3):	Relay Pairs of 15- Bus System (MG)	23
Table (3-1): I	Fault Current Analysis, (Test Case: IEEE 8- Bus System)	37
Table (3-2): I	Fault Current Analysis, (Test Case: 15- Bus MG scheme)	38
Table (4-1): I	DOCR Characteristic [12]	48
Table (6-1):	Test Systems Data	78
	The AI Techniques Parameters	
Table (6-3):	Constraints of the Coordination Problem	81
Table (6-4): 1	Relay Coordination Results-Based GA, IEE 8-Bus System	82
Table (6-5): I	Relay Coordination Results-Based MFO, IEE 8-Bus System	85
Table (6-6): I	Relay Coordination Results-Based COA, IEE 8-Bus System	87
Table (6-7): I	Relay Coordination Results-Based GA, 15-Bus system MG	90
Table (6-8): I	Relay Coordination Results-Based MFO, 15-Bus system MG	94
Table (6-9): I	Relay Coordination Results-Based COA, 15-Bus system MG	98
Table (6-10):	DOCRs Coordination Based Analytical Method at Different CTI fo	
	System	
, ,	DOCRs Coordination Based Analytical Method at Different CTI fo	
	Bus system MG	
	DOCRs Coordination Results, Based Different Objective Functions	
	Case: IEEE 8-Bus System)	
, ,	Results Based on The Proposed AI Techniques	
	Comparison Results of the Proposed Analytical Method	
	Analytical and AI Methods Results Comparison	
	Line data of 8-bus IEEE interconnected System	
	oad data of 8-bus IEEE interconnected System	
	Relay's CT Data of 8-bus IEEE interconnected System	
Table (A-4) I	Relay's CT Data of 15-bus MG System	124

List of Symbols

 CT_i Current Transformer Of i^{th} RelayCTICoordination Time Interval $dt_{pen}(i)$ CTI Penalty For i^{th} Relay

dt Coordination Time Interval Symbol in MATLAB M-File

 $if_{3ph}(i)$ Three Phase Fault Current Of i^{th} Relay $I_{f.min,i}$ Minimum Fault Current Of i^{th} Relay $I_{pi,min}$ Minimum Pick-Up Current Of i^{th} Relay $I_{pi,max}$ Maximum Pick-Up Current Of i^{th} Relay $I_{rated.i}$ Nominal Current Flow In i^{th} Relay

Κ, α, **L** Overcurrent Relay Characteristic Equation Parameter

n_pairs Number of Relay PairsOLF Overload FactorPS Plug Setting

 $PS_{i,min}$ Minimum Plug Setting Of i^{th} Relay $PS_{i,max}$ Maximum Plug Setting Of i^{th} Relay

 pen_{TMS} Summation Of TMS Penalties for All Relays pen_{dt} Summation of CTI Penalties for All Relays $T_{op(i)}$ Operating Time of The Of i^{th} Primary Relay

 T_p Primary Relay Operating Time T_b Backup Relay Operating Time TMS Time Multiplier Setting

 $TMS_{i,min}$ Minimum Time Multiplier Setting Of i^{th} Relay $TMS_{i,max}$ Maximum Time Multiplier Setting Of i^{th} Relay

 TMS_{pen} TMS Penalty For i^{th} Reay λ Normalizing Factor