

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems Engineering

Design and Implementation of Wireless Electrocardiography (ECG) Monitoring System

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer and Systems Engineering)

by

Ahmed Mohamed Hussein Ahmed Aboalseoud

Bachelor of Science in Electrical Engineering

(Communication Systems Engineering)

Credit Hours Engineering Programs, Faculty of Engineering, Ain Shams University, 2013

Supervised By

Prof. Ayman Mohamed Mohamed Hassan Wahba

Dr. Mohamed Ahmed Mohamed El-Nozahi

Dr. Ahmed Mohamed Ibrahim Hassan El-Rafei

February 2020

Cairo, Egypt

Acceptance on Master Degree

Faculty of Engineering

Computer and Systems Engineering

Design and Implementation of Wireless Electrocardiography (ECG) Monitoring System

Prepared by:

Ahmed Mohamed Hussein Ahmed Aboalseoud

Examiners' Committee

Name	Signature
Prof. Ahmed Mohamed El-Bialy	
Systems and Biomedical Engineering, Cairo University	
Prof. Hani Fikry Ragaai	
Electronics & Electrical Communication Engineering, Ain Shams University	•••••
Prof. Ayman Mohamed Mohamed Hassan Wahba	
Computer and Systems Engineering, Ain Shams University	

	1	1
/		/

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Computer and Systems Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name: Ahmed Mohamed Hussein Ahmed Aboalseoud
Signature

Researcher Data

Name: Ahmed Mohamed Hussein Ahmed Aboalseoud

Date of birth: 01-Dec-1990

Place of birth: Cairo, Egypt

Last academic degree: B.Sc. in Electrical Engineering

Field of specialization: Communication Systems Engineering

University issued the degree: Credit Hours Engineering program, Ain Shams University

Date of issued degree: June 2013

Current job: Testing/Application Engineer at Analog Devices, Inc.

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Computer and Systems Engineering

Thesis title: Design and Implementation of Wireless Electrocardiography (ECG)

Monitoring System

Submitted by: Ahmed Mohamed Hussein Ahmed Aboalseoud

Degree: Master of Science in Computer and Systems Engineering

Thesis Summary

With the increasing interest about healthcare, more people desire to check their health conditions frequently. Home healthcare electronic devices enable patients to monitor their vital signals. Electronic measurement of ECG faces many challenging problems such as the electric field interference, low ECG amplitude and motion artifacts due to the patient movements. An onbody wireless sensor network is used for monitoring the ECG signals from the human body. This thesis demonstrates a new application for the wireless domain to improve the home healthcare of patients. Home healthcare electronic devices, which enable patients to test, monitor ECG continuously, and treat certain healthcare conditions are becoming an important aspect of healthcare. The main difference between this system and the existing ones is that the electrodes themselves are communicating with a base station in a wireless fashion, thus providing better

mobility for the patient. In this thesis, the techniques for motion artifacts reduction are explored for a wireless sensor system for ECG monitoring.

This thesis is divided into 5 chapters:

- 1. Introduction
- 2. Background and Literature survey on wireless systems for ECG monitoring architectures
- 3. System design and simulation for the wireless sensor system top level architecture
- 4. Circuit design, simulation for the sensor interface front end building blocks and System implementation and testing
- 5. Conclusion

Keywords:

Telemedicine, Electrocardiogram (ECG), accelerometer, real-time monitoring, single lead, adaptive filter, motion artifacts, body sensor network

Acknowledgment

I am very grateful to Allah, for letting me finish this thesis and with it my MSc degree. I would like to thank Prof. Hani Ragaai and Dr. Mohamed El-Nozahi for allowing me to join their research group. And for their continuous guidance, mentoring and patience with me. I would like specially to thank my supervisors, Dr. El-Nozahi and Dr. Ahmed Ibrahim, for their continuous inspiration and encouragement on this work. It has been a valuable experience to work with them.

I thank my fellow colleagues at ASU, they helped me a lot whether technically by advising me and having good discussions. I would like to thank Eng. Akram Youssry for his continuous support.

At the end, I would like to share this joy with my family members and friends. My parents and parents-in-law, your support and prayers all the time made this task easier. My brother, sisters and brothers-in-law, your advices and encouraging words were the reminder to continue this work. My wife and son to whom this dissertation is dedicated, thank you for your love, support and cheering me up whenever I was down.

This project is funded by National Telecom Regulatory Authority (NTRA) in Egypt.

CONTENTS

Contentsviii
List of Figuresxi
List of Tablesxv
List of Symbolsxvi
Abbreviationsxviii
1. Introduction
1.1 Motivation
1.2 Thesis Contribution
1.3 Thesis Outline
2. Background and Literature survey
2.1 Electrical Conduction System of the Heart
2.2 Methods for Calculating Heart Rate
2.2.1 Method 1: Count Large Boxes
2.2.2 Method 2: Count Small Boxes
2.2.3 Method 3: Six-Second ECG Rhythm Strip
2.3 ECG interpretation12
2.4 ECG system literature
2.4.1 Moving mean algorithm

Contents

2.4.2 Wavelets Transform Method	16
2.4.2.1 Wavelets Transform Overview	16
2.4.2.2 Wavelets Examples	16
2.4.2.3 Studies	18
2.4.2.3.1 1st wavelet study	18
2.4.2.3.2 2 nd wavelet study	21
2.4.3 Least Mean Squares (LMS) Algorithm	23
2.5 Summary	25
3.System design and simulation for the wireless sensor system	top level architecture
	26
3.1 Node Block Diagram	26
3.1.1 1st Prototype Node Block Diagram	26
3.1.2 Final Node Block Diagram	28
3.2 Base Station Block Diagram	28
3.3 Communication Protocol	30
3.4 De-noising Algorithms	33
3.4.1 Implemented Least-Mean-Squares Method	34
3.4.2 Implemented Delta-Bar-Delta Method	35
3.4.3 Results	35
3.4 Summary	48
4. Circuit design, simulation for the sensor interface front end b	ouilding blocks, System
implementation and testing	49

Contents

4.1 1 st Prototype Implementation	49
4.1.1 XBEE RF Module	49
4.1.2 DSP Unit	50
4.1.3 ECG Sensor	50
4.1.4 Printed Circuit Board Design and implementation	51
4.1.5 1 st Prototype Testing	54
4.2 2 nd Prototype Implementation	56
4.3 Final Prototype Implementation	59
4.4 Summary	63
5. Conclusion	64
5.1 Future work	65
6. Bibliography	66
Author's Publications	. 72

LIST OF FIGURES

Figure 1-1: Typical ECG of a heart in normal sinus rhythm
Figure 1-2: Noisy ECG measured signal2
Figure 1-3: Magnetic field effect on ECG [11]
Figure 2-1: Heart location [16]
Figure 2-2: Conduction system of the heart [16]
Figure 2-3: Correlation of depolarization and repolarization with the ECG [16]
Figure 2-4: ECG recording [17]
Figure 2-5: 60 bpm rate by enumerating large boxes for heart rate [16]
Figure 2-6: Using a 6-sec ECG rhythm strip to calculate heart rate: $7 \times 10 = 70$ bpm 12
Figure 2-7: (a) SEMG signal contaminated with ECG artifact (SNR = -8 dB). The
contaminated sEMG filtered using a moving average window size of (b) 50 ms and (c) 10 ms. [24]
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet
Figure 2-8: The fractal self-similarity of the Daubechies mother wavelet

Figure 2-14: Comparison of original signal (record 103) and corrected ECG signal	l based
on bior4.4 wavelet [21]	23
Figure 2-15: Adaptive Filter block diagram	23
Figure 2-16: (a) 3D Acceleration, (b) Motion Artifacts, (c) Clean ECG, (d) sum of	of both
noise and clean ECG signals (SNR=-16.6dB) and (e) Filtered ECG [20]	24
Figure 3-1: Communication environment between nodes and base station	26
Figure 3-2: Layers description of sensor node	27
Figure 3-3: Proposed wireless node block diagram	28
Figure 3-4: Base Station Block diagram	29
Figure 3-5: Software interface for wireless sensor nodes	30
Figure 3-6: Timing diagram of the communication protocol between nodes and base	station
	31
Figure 3-7: Required memory size vs. sampling rate	32
Figure 3-8: Node sleep time vs. sampling frequency	33
Figure 3-9: Simulated ECG noise sources	36
Figure 3-10: Assumed ECG noise sources measurement	36
Figure 3-11: Comparison between algorithms on record 118 for $\epsilon = 0.0001$	37
Figure 3-12: Comparison between algorithms on record 118 for $\epsilon = 0.001$	37
Figure 3-13: Comparison between algorithms on record 118 for $\epsilon = 0.005$	38
Figure 3-14: Comparison between algorithms on record 118 for $\epsilon = 0.01$	38
Figure 3-15: Comparison between algorithms on record 118 for $\epsilon = 0.05$	39
Figure 3-16: Comparison between algorithms on record 118 for $\epsilon = 0.1$	39
Figure 3-17: Comparison between algorithms on record 118 for $\epsilon = 0.5$	40

	Figure 3-18: Comparison between algorithms on record 118 for $\epsilon = 0.7$	0
	Figure 3-19: Comparison between algorithms on record 118 for $\epsilon = 0.9$	1
	Figure 3-20: Comparison between algorithms on record 118 for $\epsilon = 1$	1
	Figure 3-21: Comparison between algorithms on record 119 for $\epsilon = 0.0001$	2
	Figure 3-22: Comparison between algorithms on record 119 for $\epsilon = 0.001$	2
	Figure 3-23: Comparison between algorithms on record 119 for $\epsilon = 0.005$	3
	Figure 3-24: Comparison between algorithms on record 119 for $\epsilon = 0.01$	3
	Figure 3-25: Comparison between algorithms on record 119 for $\epsilon = 0.05$	4
	Figure 3-26: Comparison between algorithms on record 119 for $\epsilon = 0.1$	4
	Figure 3-27: Comparison between algorithms on record 119 for $\epsilon = 0.5$	5
	Figure 3-28: Comparison between algorithms on record 119 for $\epsilon = 0.7$	5
	Figure 3-29: Comparison between algorithms on record 119 for $\epsilon = 0.9$	6
	Figure 3-30: Comparison between algorithms on record 119 for $\epsilon = 1$	6
	Figure 3-31: Simulated enhanced SNR for the de-noised signal	7
	Figure 3-32: Simulated correlation between the clean ECG signal and the de-noised signal	al
•••••	4	8
	Figure 4-1: The EKG/EMG shield	1
	Figure 4-2: PCB schematic design of the DSP module	2
	Figure 4-3: PCB layout design of DSP module	2
	Figure 4-4: 3-D view of the PCB	3
	Figure 4-5: 1 st fabricated prototype	4
	Figure 4-6: Software interface for wireless sensor nodes	5
	Figure 4-7: Example showing the measured ECG signal	5

List of Figures

Figure 4-8: Circuit diagram of the ECG sensing module using discrete components 56
Figure 4-9: Output waveform of the ECG sensor module for an input signal having
amplitude of 2 mV and shifted by 1 VDC
Figure 4-10: Circuit of ECG sensing module using discrete components on a breadboard
Figure 4-11: Measured small sine wave after ECG sensing circuit
Figure 4-12: PCB layout of the ECG sensor module (a) Top-level view (b) 3-D view 59
Figure 4-13: Fabricated prototype of the ECG sensor module
Figure 4-14: ECG Sensor Module Circuit [17]
Figure 4-15: Final fabricated prototype
Figure 4-16: Measured ECG signal using the proposed wireless ECG sensor node 62
Figure 4-17: PCB schematic of the wireless sensor node
Figure 4-18: PCB layout of the wireless sensor node
Figure 5-1: Packaged ECG prototype

LIST OF TABLES

Table 1: Methods 1 and 2 for Calculating Heart Rate	. 11
Table 2: Rhythm analysis	. 13
Table 3: Normal Heart Rate	. 14
Table 4: Noise removal using different filtering techniques on a normal ECG signal	. 19
Table 5: Noise removal using different filtering techniques from LVE signals	. 20
Table 6: Specifications used for ECG system	. 64