

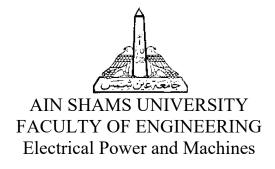
AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Engineering

Optimized Controller for Converter Based DG

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering (Electrical Power and Machines Engineering)

by

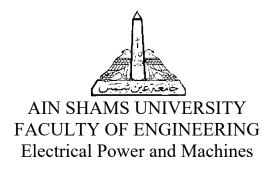

Ahmed Haitham EL-Ebiary

Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering)
Faculty of Engineering, University, 2016

Supervised By

Prof. Dr. Mostafa Ibrahim Mohamed Marei Dr. Mahmoud Abdallah Attia Ibrahim

Cairo - (2020)


Optimized Controller for Converter Based DG

by **Ahmed Haitham EL-Ebiary**

Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering)
Faculty of Engineering, University, 2016

Examiners Committee

Name and Affiliation	Signature
Prof.Dr. Samir Sayed Abdel-Hameed Electrical Power and Machines , Helwan University	
Prof.Dr. Ahmed Abdel-Sattar Abdel-Fattah Electrical Power and Machines, Ain Shams University	······································
Prof.Dr. Mostafa Ibrahim Mohamed Marei Electrical Power and Machines , Ain Shams University	
	Date:17 January 2020

Optimized Controller for Converter Based DG

by **Ahmed Haitham EL-Ebiary**

Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering)
Faculty of Engineering, University, 2016

Supervisors Committee

Name and Affiliation	Signature
Prof. Mostafa Ibrahim Mohamed Marei Electrical Power and Machines, Ain Shams University	y
Dr. Mahmoud Abdallah Attia Ibrahim Electrical Power and Machines, Ain Shams University	y
	Date:17 January 2020

Statement

This thesis is submitted to Faculty of Engineering, Ain shams University as a partial fulfilment of Master of Science in Electrical Engineering . The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name Ahmed Haitham El-Ebiary Signature

Date:17 January 2020

Researcher Data

Name : Ahmed Haitham Taher Massoud El-Ebiary

Date of birth : 11-5-1993
Place of birth : Cairo, Egypt.
Last academic degree : Bachelor's degree.

Field of specialization : Electrical power and machines

engineering.

University issued the degree : Ain Shams University.

Date of issued degree : 22-7-2016 Current job : Demonstrator

Abstract

Most of Distributed Generators (DGs) use Voltage Source Inverter (VSI) for the purpose of interfacing DG with the grid and producing electricity at the desired voltage and frequency. By applying different control strategies for the inverter, we can control the DG as a current source or as a voltage source depending on the controlled variable in the control strategy.

DG is controlled as a current source in the grid connected mode and the controlled variable in this mode is the grid current to control the active and reactive power injected to the grid. In contrast, DG is operated as a voltage source in the islanded mode, and the controlled variable will be the voltage across the local load to keep its amplitude and frequency within the allowable limits. Therefore, the DG operates in two steady state modes: grid connected mode and islanded mode, and two transient modes: transition from grid connected to islanded, and from islanded to grid connected. During these transient modes, the voltage and current of the critical local load connected to the DG suffer from destructive spikes, as we need to switch the control strategy of the inverter. To solve this problem a seamless control strategy for the inverter of the DG is used with no need for switching between different control schemes. The strategy is called the "Unified Control Strategy". The strategy is implemented in the Synchronously Rotating reference Frame (SRF), where AC quantities, that need to be regulated, are converted to DC quantities in this frame so conventional Proportional Integral (PI) controllers can be used which are simple and can achieve zero steady state error.

Hysteresis Current Controller (HCC) is used for generating the gate signals for the inverter switches which is based on comparing output currents of the inverter with their reference values, and then the error signals pass into Hysteresis comparator to decide which switch that will be given a signal on its gate to operate, so the controlling variable is always the inverter output current.

In this thesis, a seamless control strategy in the SRF is applied for the inverter to achieve smooth transition between different modes of operation and to improve the power quality. The same control structure is used for all modes, and there is no need for transition between different control structures. The DG is controlled as a current source in the case of grid connected mode by the means of current loop to control active and reactive power injected to the grid, and as a voltage source in the islanded mode by the means of voltage loop to control the voltage of local critical load . The

controller proposed in the strategy is the Set Membership Affine Projection Algorithm (SMAPA) based Proportional Integral (PI) controller whose proportional gain (Kp), and integral gain (Ki) are chosen based on optimization technique to get the better dynamic performance during transitions.

The proposed control strategy is tested using PSCAD/EMTDC simulation environment under different loading conditions, and different types of loads linear, and non-linear loads. Simulations show the effectiveness of the control strategy during different modes of operation. The superiority of the proposed method is achieved through comparison with another method based on PWM technique.

Key words: Distributed generation, Seamless transfer, Set membership affine projection algorithm, Voltage source inverter, Grid connected, Islanding.

Acknowledgment

I would like to thank my supervisors: Professor. Mostafa Ibrahim Marei and Dr. Mahmoud Abdallah Attia for their effort, and support during the research, they guided me & encouraged me untill the end of this research. Also I would like to thank Dr.Mohamed Moukhtar and Eng. Abdallah Alaa for their guidance, and discussions.

Ahmed Haitham EL-Ebiary

January 2020

List of Contents

Chapter 1: Introduction	16
1.1 Distributed Generator (DG) operation modes	16
1.2 DG Problems	17
1.3 DG interfacing with grid via inverter	17
1.3.1 Current Control of Inverter	18
1.3.2 Voltage Control of Inverter	19
1.4 State-of- Art and literature survey	20
1.5 Adaptive Controllers for Inverter based DG	25
1.6 Thesis Outline	25
Chapter 2: The Unified Control Strategy	27
2.1 Introduction	27
2.2 Power Stage	27
2.3 Control Stage	27
2.3.1 Alternative Analysis	30
2.4 Operation Modes	31
2.4.1 Grid connected mode :	31
2.4.2 Transition from grid connected to islanded:	32
2.4.3 Islanding mode:	33
2.4.4 Transition from islanded mode to grid connected :	33
Chapter 3: The proposed unified control strategy based on a PI controller	-
3.1 Introduction	
3.2 Adaptive Controllers	
-	
3.2.1 Gain Scheduling controller:	
3.2.2 Self tuning regulator	
3.2.4 Machine Learning Based Adaptive Controllers	
J.Z. TVIACIIIIC LEATHING DASCU AUAPHVE CONHORICIS	

3.2.4.1 Fuzzy Logic Adaptive Controllers	39
3.2.4.2 Neural Networks Adaptive Controllers	39
3.2.4.3 Reinforcement Learning Adaptive Controllers	
3.2.5 Adaptive Filtering Based Controllers	39
3.2.5.1 Set Membership Filtering	40
3.3 Set-Membership Affine Projection Algorithm (SMAPA):	41
3.4. The proposed SMAPA based PI controller	45
3.5. Summary	46
Chapter 4: Results & Simulation	48
4.1 Introduction	48
4.2 System under study	48
4.3 Case Study One: Adding Local Load.	49
4.4 Case Study Two: Sudden Grid Loading	51
4.5 Case Study Three: Seamless Transitions	52
4.5.1: Transition to islanding	52
4.5.2: Transition to grid-connected	55
4.5.3: PI Controller Online Adapatation	56
4.6 Case Study Four: Non-Linear Local Loads & Harmonics Mitigation.	57
1/HtiSation.	
Chapter 5: Conclusions & Future Work	63
5.1 Conclusions	63
5.2 Future work and Recommendations	64
References	65

List of Figures

Fig (1-1) Distributed Generation connection with grid at medium voltag	₅ e
level	
Fig (1-2) Three phase voltage source inverter VSI	18
Fig (1-3) Hysteresis current control loop for VSI supplying 3-phase loa	
Fig. (1.4) Comment 9 Welter a control 1 conservat from DC	
Fig (1-4) Current & Voltage control loops used for DG	
Fig (2-1) Block diagram of the unified control strategy for DG system.	
Fig (2-2) Control strategy in grid connected mode.	
Fig (2-3) Control strategy in islanded mode.	
Fig (3-1) Block diagram of gain scheduling controller.	
Fig (3-2) Block diagram of self tuning controller.	
Fig (3-3) Block diagram of MRAC controller	
Fig (3-4) Block diagram of Adaptive Filter	
Fig (3-5) General algorithm update.	42
Fig (3-6) Update resulting in a zero posteriori error	
Fig (3-7) Update resulting in a constant posteriori error.	
Fig (3-8) Block diagram of SMAPA based PI controller	
Fig (4-1) Voltage controller: (a) The output of the PI controller used for	
d-axis voltage control loop, (b) The output of the P controller used for q	-
axis voltage control loop.	
Fig (4-2) (a) Output active power from the VSI (b)Output Reactive Pow	
from VSI	
Fig (4-3)(a) Phase A inverter current during sudden local loading.(b)Gri	
current and voltage durting sudden local loading	
Fig (4-4) Sudden grid loading: (a) Phase A grid current and voltage, and	
(b) Phase A inverter current.	52
Fig (4-5) (a)Phase A Load voltage during islanding. (b) Phase A load	
current during islanding.	
Fig (4-6)(a) Capacitor voltage reference in d-axis and capacitor voltage	ın
d-axis.(b)Capacitor voltage in q-axis (c)Local load current in d-axis	
(d)Local load current in q-axis.	
Fig (4-7) (a)Phase A load voltage during re-synchronization. (b) Phase A	
load current during re-synchronization.	56
Fig (4-8) The gain of the adaptive PI controller: (a) Kp and (b) Ki	
Fig (4-9) The error signal of the adaptive PI controller	57
Fig (4-10) Non-linear local loading with load current feedforward: (a)	
non-linear load current, (b) DG inverter current, and (c) Grid current	
Fig (4-11) Non-linear local loading without load current feedforward: (a	-
non-linear load current, (b) DG inverter current, and (c) Grid current	59

Fig (4-12) Frequency spectrum of the grid current without load current	
feedforward	.60
Fig (4-13) Frequency spectrum of grid current with load current feed	
forward	.60
Fig (4-14) THD of grid current with & without Load Current Feed	
Forward	.61
Fig (4-15) THD of grid current in case of using HCC & PWM for	
Inverter	.61

List of Tables

Table (4-1) Parameters of the system under study.

List of Abbreviations

DG Distributed Generator.

VSI Voltage Source Inverter.

CSI Current Source Inverter.

HCC Hysteresis Current Controller.

AC Alternating Current.
DC Direct Current.

PI Proportional Integral.

SRF Synchronously Rotating Frame.

SMAPA Set-Membership Affine Projection Algorithm.

UPS Uninterruptable Power Supply.
PCC Point of Common Coupling.
PWM Pulse Width Modulation.
PR Proportional Resonant.

MRAC Model Reference Adaptive Controller.

NN Neural Networks. LMS Least Mean Square.

RLMS Recursive Least Mean Square.

SMF Set Membership Filtering.

APA Affine Projection Algorithm.

NLMS Normalized Least Mean Square.

IP Performance Index.
CV Controlled Variables.
PLL Phase Locked Loop.

List of Symbols

d(k) Desired Signal Vector of Adaptive Filter.

X(k) Input Vector of Adaptive Filter.Y(k). Output Vector of Adaptive Filter.

W Weight Vector. Θ Feasibility set. γ Error Tolerance. H_k Constraint Set. ψ_k Membership Set.

 λ_k Vector of Lagrangian multipliers.

g(k) Posteriori error with new weight vector.

α(k) Learning/ Updating rate.m(k) Pi controller action.

Kp Pi controller proportional term. Ki Pi controller integral term.

 v_{cd}^* Capacitor Voltage reference in d-axis.

v_{cd.} Capacitor Voltage in d-axis

 v_{cq}^* Capacitor Voltage reference in q-axis.

 v_{cq} Capacitor Voltage in q-axis.

 i_{VSI} Inductor current of voltage source inverter.

*i*_L Local load current.

 i_{Ld} Local load current component in d-axis. i_{Lq} Local Load current component in q-axis.

 R_s Local load resistance. X_s Local load reactance. v_c Local Load Voltage. v_g Utility Voltage.

v_g Utility Voltage.
v_{Ga} Utility Voltage composition

 v_{Gq} Utility Voltage component in q-axis. v_{Gd} Utility Voltage component in d-axis.

 i_{VSId}^* Voltage source inverter reference current in d-axis. i_{VSIq}^* Voltage source inverter reference current in q-axis.

 V_{max} Maximum allowable load voltage. i_{Gd}^* Grid Current reference in d-axis. i_{Gq}^* Grid Current reference in q-axis. P_g Active power injected to the grid. Q_g Reactive power injected to the grid.

Vn Rated rms phase voltage.

P_{DG} Active Power generated by distributed generator. Q_{DG} Reactive Power generated by distributed generator.