

Ain Shams University
Faculty of Engineering
Design and Production Engineering

Studying of factors influencing the use of cellulose-based nanoparticles for reinforcement of polymer composites in industrial applications

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering
(Design and Production Engineering)

By

Khaled Mustafa Hamed Elerian

Master of Science in Mechanical Engineering
(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2015

Under the supervision of:

Prof. Dr. Hamed El-Mously

Design and Production Engineering- Mechanical Engineering - Ain Shams University

Associate Prof. Dr. Ola Hussien Abdelbar

Agriculture Botany Department - Faculty of Agriculture - Ain Shams University

Cairo - 2020

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production

Studying of factors influencing the use of cellulose-based nanoparticles for reinforcement of polymer composites in industrial applications

by

Khaled Mustafa Hamed Elerian

Master of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2015

Examiners' Committee

Name and Affiliation	Signature
Prof.Dr. Elsayed Abdelbary	
Professor and head of department of polymers at Germany University	
Prof.Dr. Mohamed Hazem Abd El-latif	
Design and Production, Faculty of Engineering, Ain Shams University	
Prof. Dr. Hamed Ibrahim El-Mously	
Design and Production, Faculty of Engineering, Ain Shams	

Date: 12 January 2020

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production

Studying of factors influencing the use of cellulose-based nanoparticles for reinforcement of polymer composites in industrial applications

by

Khaled Mustafa Hamed Elerian

Master of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain ShamsUniversity, 2015

Supervisors' Committee

Name and Affiliation	Signature
Prof. Dr. Hamed Ibrahim El-Mously	
Design and Production , Faculty of Engineering, Ain Shams University	
Associate Prof. Dr. Ola Hussien Abdelbar Agriculture Botany Department - Faculty of Agriculture - Ain Shams University	

Date: 12 January 2020

Statement

This thesis is submitted in partial fulfillment for the degree of Doctor of Philosophy in Mechanical Engineering- Design and Production department, to the Faculty of Engineering, Ain Shams University. The work included in this thesis was carried out by the author, primarily at the laboratories of the Design and Production Engineering department, Faculty of Engineering, Ain Shams University. No part of this thesis has been submitted for degree or qualification at any university.

Khaled Mustafa Hamed Elerian

Signature:			

Date:			

Curriculum vitae

Name: Khaled Mustafa	Hamed Elerian	
Birth Date: 30-10-1980		
Place of Birth: Cairo, Egy	/pt	
Last academic degree	e: Master of Science in Mechanical Er	ngineering
Department: Design and	Production Engineering	
Field of specialization: Na	anotechnology	
University issued the deg	gree: Ain Shams University	
Date of issued degree: 20	015	
	Khaled Mustafa Han	ned Elerian
	Signature ()

ACKNOWLEDGEMENT

It gives me immense pleasure to express my deep sense of gratitude to my supervisors Prof. Dr. Hamed El-Mously and Associate Prof. Dr. Ola Hussien for their invaluable guidance, motivation, constant inspiration and above all their ever co-operating attitude which enabled me to bring up this thesis in the present form.

I am extremely thankful to Prof. Dr. Ahmed Mounib, head of the Design and Production Engineering Department as well as all department members for providing all kinds of possible help and advice during the course of this work.

It is a great pleasure for me to acknowledge and express my gratitude to my parents, my wife, my daughters, and my brothers for their understanding, unstinting support and endless encouragement during my study.

I am greatly thankful to all my friends for their inspiration and help.

Last, I sincerely thank all those who have directly or indirectly contributed to the work, reported herein.

Khaled Mustafa Hamed Elerian

ABSTRACT

This study focuses on the use of cellulose-based natural fibers, extracted from date palm midribs in the form of nano particles, as reinforcement to Epoxy resin. Date palm midribs were first roughly broken to lengths of ~ 10mm in macro scale and then were chemically treated by two methods (Alkali treatment which is called Treatment1 and the other alkali and acetylation treatment which is called Treatment2). Further the material was milled down to nano scale, using a self-designed and constructed planetary ball mill, resulting in particles sizes ranging between 10.86 to 21.36 nm for Alkali treated fibers, and between 30.63 to 63.93 nm for alkali and acetylation treated fibers. Nanocomposites were prepared using a casting technique by ultrasonic dispersion method, where compounds of varying compositions (0.5 up to 5 wt% nanofiber reinforcement), were treated using amino silane coupling agent, and finally specimen were poured into rubber molds of requested shape. Nanocomposites were oven-dried at 80°C for 2 hours. The mechanical performance of the composites was evaluated in terms of tensile, flexural and impact properties in addition to hardness. The results show that increasing palm midrib nano fibers content has significant effect on all mechanical properties as compared to the control sample. For the first treatment; the tensile strength has increased by an amount of 40% at 3% nano date palm midribs (NDPM) content, the tensile Young's modulus has increased by an amount of 13.6% at 5% NDPM content. The bending strength has increased by an amount of 7.2% at 0.5% NDPM content, the flexural modulus has increased by an amount of 15.36% at 0.5% NDPM content. The impact strength has increased by an amount of 196% at 3% NDPM content, the Shore D hardness has increased by an amount of 8% at 1% NDPM content. Concerning the second treatment; the tensile strength has increased by an amount of 29.74% at 3% NDPM content, the tensile Young's modulus has increased by an amount of 9.5% at 5% NDPM content. The bending strength has increased by an amount of 2.83% at 0.5% NDPM content, the flexural modulus has increased by an amount of 9.93% at 1% NDPM content. The impact strength has increased by an amount of 153% at 1% NDPM content, the Shore D hardness has increased by an amount of 8.1% at 1% NDPM content.

The results show that the alkali treatment is more suitable and provides better enhancing in all mechanical properties than the alkali and acetylation treatment.

Keywords: nanoparticles, natural fibers, biocomposites

TABLE OF CONTENTS

1	INTROD	UCTION	1
1.1	General l	Background On Polymer/Nanofiller Composites	2
1.2	Nanopart	ticles Of The Polymer Composites	2
1.3	Natural F	Fiber Nanocomposites	3
2	STATE O	F THE ART	5
2.1	Natural F	Fibers	6
2.2	Date palr	m - Phoenix Dactylifera L	10
2	.2.1 Coi 2.2.1.1	mparison between date palm fibers and other fiber types	
	2.2.1.2	Density of date palm fibers	12
	2.2.1.3	Aspect ratio (length/diameter) of date palm fibers	12
	2.2.1.4	Thermal conductivity of date palm fibers	13
	2.2.1.5	Availability of date palm fiber	13
	2.2.1.6	Raw fiber cost of date palm fibers	14
	2.2.1.7	Elongation to break of date palm fibers	14
	2.2.1.8	Specific modulus of elasticity to cost ratio of Date Palm Fiber	15
2	.2.2 Co	nclusion	16
2.3	Chemical	l Treatment	16
2	.3.1 Nat 2.3.1.1	tural fiber composite	
	2.3.1.2	Matrix	17
	2.3.1.3	Factors affecting composite properties	18
	2.3.1.3	.1 Plant fiber structure	18
	2.3.1.3	.2 Thermal stability of fibers	19
	2.3.1.3	3.3 Presence of voids	19
	2.3.1.3	.4 Moisture absorption of fibers	20
	2.3.1.4	Surface modification of natural fibers	20
	2.3.1.4	.1 Physical methods	21
	2.3.1.4	.2 Chemical methods	21

	2.3.1.4.2.1	Alkaline treatment	21
	2.3.1.4.2.2	Silane treatment	23
	2.3.1.4.2.3	Acetylation treatment	24
	2.3.1.4.2.4	Benzoylation treatment	24
	2.3.1.4.2.5	Peroxide treatment	24
2.4	Chemical Treatm	nent Litrature	25
2.5	Silane Coupling	Agent	31
2.5	5.1 Why silane	e coupling agents are used	31
2.5		oose a silane coupling agent	
2.5	5.3 Calculating	g the quantity of silane required	33
2.6	Silane Treatmen	t Method	34
2.6	5.1 For inorga	nic material	34
2.6		c material	
2.6	5.3 Holistic m	ixing (in Organic-Inorganic mixture)	35
3 l	PROBLEM DIFI	NITION	36
4 (OBIECTIVE AN	D RESEARCH STRATEGY	38
		L WORK	
3 1			
5.1	Materials		41
5.2	Nanoparticles pr	reparation	43
5.3	Date Palm Midri	ib (DPM) Nanocomposite Preparation	44
5.4	Mechanical Char	racterization	47
5.4	1.1 Tensile tes	t	47
5.4	C	est	48
5.4	1 0	pact Test	
5.4	1.4 Hardness	Test	49
5.5	SEM Microscopi	c Analysis	49
5.6	Statistical Analys	sis	50
6 l	RESULTS AND	DISCUSSION	52
6.1	Tensile Propertie	es Of DPM Nano-Particle Reinforced Epoxy Composites	53
6.1	1.1 Effect of	Date Palm Midribs Nanoparticles on Tensile Strength	and Tensile
М	adulus		53

6.2	2 Bending Properties Of DPM Nano-Particle Reinforced Epoxy Composites	54
	6.2.1 Effect of Date Palm Midribs Nanoparticles on Bending Strength and Flo Modulus	
6.3	3 Impact Properties Of DPM Nano-Particle Reinforced Epoxy Composites	57
6. 4	4 Hardness Properties Of DPM Nano-Particle Reinforced Epoxy Composites	62
6.5	5 Statistical Analysis	64
7	CONCLUSIONS AND FUTURE RECOMMENDATION	65
7.1	1 Conclusions	66
7.2	2 Future Recommendations and future work	67
8	REFERENCES	69
9	APPENDICES	81
Аp	ppendix I: Planetary Ball Mill Design	83
_	ppendix II: Report of the Tem analysis to determine the nanoparticle size, the regional center for ycology and biotechnology, Al-azhar university	85
Αp	ppendix III: Tensile Testing Standard: DIN EN ISO 527-2	86
Ap	ppendix IV: Flexural Test Standard: DIN EN ISO 178:2003	97
Ap	ppendix V: Impact Testing Standard: DIN EN ISO 179-1: 2010	112
Ap	ppendix VI: Hardness Testing Standard: DIN EN ISO 868: 2003	139
Ap	ppendix VII: ANOVA Testing Procedure	169
Аp	ppendix VIII: Critical values of the F-coefficient at 95 % confidence level	179
Αp	ppendix IX: Summary of ANOVA test results	180

LIST OF FIGURES

Figure 2.1. Classification of natural and synthetic fibers [53].	6
Figure 2.2. Diagrammatic representation of date palm structure, showing attachment of	
offshoot to mother palm, among other morphological features [59]	10
Figure 2.3. Schematic drawings of a date palm leaf [59]	11
Figure 2.4 The content of cellulose and lignin of coir, date palm, hemp, and sisal fibers	
[64]	11
Figure 2.5 The density of the date palm compared to other types of natural fibers [64]	12
Figure 2.6 Comparison between the date palm fibers and other natural fibers with	
respect to the aspect ratio (L/D) [64].	12
Figure 2.7 Comparison of the thermal conductivity of date palm with other types of	
natural fiber [64]	13
Figure 2.8 The annual world production of selected types of natural fibers [64]	14
Figure 2.9 Comparison between the cost of date palm fibers and other fiber types used	
in industrial applications [64]	14
Figure 2.10 Comparison between elongation to break percentage property of date palm	
fiber and other natural fiber types used in industrial applications [64]	15
Figure 2.11 Comparison of the date palm fiber's specific modulus of elasticity per cost	
ratio with other selected types [64].	15
Figure 2.12 Schematic view of secondary layer of fiber cell wall structure (Bledzki&	
Gassan, 1999)	19
Figure 2.13 The effect of alkali treatment on cellulose fiber structure (i) untreated fiber	
and (ii) alkali-treated cellulose fiber (Leonard & Martin, 2002)	22
Figure 2.14 Scheme of interaction of silanes with cellulosic fibers [113]	27
Figure 2.15. Effect of moisture on fiber – matrix interface [120].	29
Figure 2.16 The silane coupling mechanism.	31
Figure 2.17 Silane coupling agent variations - basic structure.	32
Figure 4.1 Research strategy	39
Figure 5.1 The obtained palm midrib pieces from a laboratory hammer mill	43
Figure 5.2 JEOL JEM.1010 TEM electron microscope.	44
Figure 5.3 Vacmobile vacuum chamber	45
Figure 5.4 Sonics Vibracell ultrasonic stirrer	45
Figure 5.5 Magnetic stirrer	45

Figure 5.6 Rubber molds which are used to cast the nanocomposites samples	46
Figure 5.7 Electrical oven	46
Figure 5.8 Standard dimensions of DIN EN ISO 527-2 1BA tensile specimen	47
Figure 5.9 LRXPlus universal testing machine	47
Figure 5.10 LRXPlus universal testing machine under bending	48
Figure 5.11 Charpy impact tester	48
Figure 5.12 Indenter for type D durometer [126]	49
Figure 5.13 A JSM-5500 scanning electron microscope.	50
Figure 5.14 A K550X sputter coater	50
Figure 6.1 Effect of NDPMP content on tensile strength.	53
Figure 6.2. Effect of NDPMP content on tensile modulus	54
Figure 6.3. Effect of NDPM content on bending strength.	55
Figure 6.4. Effect of NDPM content on flexural modulus.	55
Figure 6.5 SEM micrographs illustrating the fracture surface of 0.5 and 1 % reinforced	
epoxy nanocomposites using NDPMP which alkaline treated with 5% NAOH	
(a) 0.5% (200X), (b) 0.5% (1500X), (c) 1% (3000X), (d) 1% (8000X)	56
Figure 6.6 SEM micrographs illustrating the fracture surface of 0.5 and 1% reinforced	
epoxy nanocomposites using NDPMP which treated with (5% by wt) NAOH	
solution and then neuterlized by acetic acid (10% by wt) (a) 0.5% (5000X),	
(b) 0.5% (11000X), (c) 1% (3000X), (d) 1% (7000X)	57
Figure 6.7 Effect of NDPMP content on impact strength.	58
Figure 6.8 SEM micrographs illustrating the fracture surface of 3 and 5 % reinforced	
epoxy nanocomposites using NDPMP which alkaline treated with 5% NAOH	
(a) 3% (4000X), (b) 3% (14000X), (c) 5% (10000X), (d) 5% (5000X)	59
Figure 6.9 SEM micrographs illustrating the fracture surface of 3 and 5 % reinforced	
epoxy nanocomposites using NDPMP which treated with (5% by wt) NAOH	
solution and then neuterlized by acetic acid (10% by wt) (a) 3% (3000X), (b)	
3% (5000X), (c) 5% (4000X), and (d) 5% (4000X)	60
Figure 6.10 Toughening mechanisms of nanoparticles [136]	61
Figure 6.11. An illustration of the effect of moisture on fiber – matrix interface [118]	61
Figure 6.12. Effect of Alkali-treated NDPMP content on shore D hardness	62
Figure 6.13. Effect of Alkali- and acetylation-treated NDPMP content on shore D	
hardness	62
Figure 7.1 shows the partial denture:	67

LIST OF TABLES

Table 2.1 presents some natural fibers, specific names, fibers types, family, and nativ	
regions [54].	7
Table 2.2 Annual production of some natural fibers [54].	7
Table 2.3. Mechanical properties of some natural fibers [54].	8
Table 2.4 Chemical compositions of some natural fibers [54].	9
Table 2.5 The generated quantities of agro residues, year 2008 [55].	9
Table 2.6 Structural composition and parameters of some natural fibers (Mohanty et al.	
2000; Fakirov, 2007)	17
Table 2.7 Comparison between thermoplastic and thermoset matrices [80]	18
Table 2.8 Recent works on the effect of alkali treatment on polymer composites	
properties	22
Table 2.9 Jute chemical composition	25
Table 2.10 Silane coupling agent recommendations for various polymers – matching	
organoreactivity to polymer type [135]	33
Table 2.11 The surface area of filler [135]	34
Table 5.1: Chemical composition of date palm midribs	41
Table 5.2.Properties of Biresin CR82 components [125]	42
Table 5.3.Properties of mixed BIresin Epoxy resin system [125]	42
Table 6.1 Summary of ANOVA test results	64
Table 7.1 Comparison between ZrO2 and NDPM Epoxy-based nanocomposites	
properties	68

LIST OF NOMENCLATURE

ABBREVIATION DESCRIPTION

DPM Date palm midribs

CNT Carbon nantube

SWNT Single-wall nanotubes

MWNT Multi-wall Nanotubes

NDPMP Nano date palm midribs particles

T g Glass transition temperature

ANOVA Analysis of variance

SS Sum of squares

MS Mean squares

Ts Tensile specimen

BS Bending specimen

IS Impact specimen

ETS Epoxy tensile specimen

EBS Epoxy bending specimen

EIS Epoxy impact specimen

R Resin

H Hardener

DPF Date palm fiber

INTRODUCTION

This chapter briefly introduces the background and motivation of this study. The use of natural fibers in nano scale as reinforcement for polymeric materials currently stands in the limelight of research investigations in the field of natural fiber-based composites.