9Medical Studies Department for Children

Faculty of Postgraduate Childhood Studies

Neurobehavioral Assessment and Neuroimaging Correlation in Children with Cerebellar Malformations

Thesis Submitted for the Fulfillment of Ph.D. Degree in Childhood Studies

Presented by Hasnaa Mohamed Elbendary (M.Sc. Pediatrics)

Research Assistant Clinical Genetics Department Human Genetics and Genome Research Division The National Research Center

Supervised by

Prof. Dr. Ehab M. Eid

Professor of Public Health and Family Medicine Department of Medical Studies for Children Institute of Postgraduate Childhood Studies

Prof. Dr. Yasser E. Nassef

Professor of Child Health National Research Centre

Dr. Ahmed F. Ahmed

Assistant Professor of Child Health National Research Centre

Dr. Rasha T. Khattab

Lecturer of Radiology Faculty of Medicine Ain Shams University

2020

Acknowledgment

First, I would like to thank Allah for the continuous blessings in all fields of my life.

This thesis would not have been possible if it were not for the aid and assistance of many people to whom I am grateful.

I have been very fortunate with my supervisors, who complemented each other wonderfully well.

Second, I would like to thank **Prof. Dr. Ehab M. Eid** Professor of Preventive Medicine and Epidemiology in Medical Studies Department for Children, Faculty of Postgraduate Childhood Studies, Ain Shams University for his remarkable effort, guidance and It is a great honor for me to be supervised by him and to be his student.

I would like to express my sincere thanks, deep gratitude and extreme appreciation to **Prof. Dr. Yasser E. Nassef,** Professor of Child Child Health Department, Medical Research Division, National Research Centre for his helpful advice and accurate supervision and kindness throughout this work.

My deep appreciation and grateful thanks are expressed to **Prof. Dr. Maha Saad Zaki,** Professor of Clinical Genetics Genome Research Division, National Research Center, for highly meticulous supervision, great effort, hard work, great patience, continuous encouragement and sincere concern. Nevertheless, she cannot be credited for all what she did for me.

I would like to express my everlasting gratitude to **Dr. Ahmed F. Ahmed,** Researcher of Child Health, National Research centre for his helpful advice and accurate supervision and kindness throughout this work.

I would like to express my everlasting gratitude to **Dr. Rasha T. Khattab,** Lecturer of Radiology, Faculty of Medicine Ain Shams University, to whom I am greatly indebted.

I am so grateful to. **Dr. Walaa Hany Ali,** Researcher of Child Health, National Research Center for help and supervision.

I can never forget the great help and effort of **Dr. Wafaa Osman,** Lecturer of pediatric, Faculty of Medicine Ain Shams University.

I am so grateful to. **Dr. Maysa Nassar,** Researcher of Child Health, National Research Center for help supervision and for her great work to do IQ for the patients. Her continuous advice and support were so helpful for me.

I am forever grateful to my Dad and my family who always sincerely offer advice, continuous support and encouragement throughout my life, my dedication of this work to the soul of my mother.

I would like also to express my thanks to my friends who have been very supportive all the time.

Many thanks for patients and their families who were involved in this study, for them I am very thankful and grateful. I hope that the results of this work may help in easing their pain and improving their quality of life.

Cognitive Impairment in Cerebellar Malformations: A Logit Model Based on Cognitive Testing

Hasnaa Mohamed Elbendary *, Yasser Nassef **, Ahmed Fathay *** Rasha Khattab ****Walaa Amin*** and wafaa Osaman**** Ehab Mohamed Eid *****

* Clinical Genetic Department, National Research Centre, Egypt.

** Professor of Preventive Medicine and Epidemiology, Medical Studies

Department for Children, Faculty of Postgraduate Childhood Studies, Ain Shams

University, Egypt.

*** Child Health department, National Research Centre, Egypt.

**** Lecturer of Radiology, Faculty of Medicine, Ain Shams University, Egypt.

***** Lecturer of Pediatric, Faculty of Medicine, Ain Shams University, Egypt.

E-mail: Hasnaa_mohamed24@yahoo.com

Abstract

Background: The complex development of the cerebellum together with the high number of involved genes and the long embryonic development of the cerebellum make the cerebellum vulnerable to a broad spectrum of malformations and disruption. Neuroimaging plays a key role in the diagnosis of posterior fossa malformations.

Objective: Our scope was to determine to what extent cerebellar malformations affect behaviour, cognition, motor functions and quality of life.

Methodology: A total of 60 patients with proven cerebellar malformations were enrolled in our cross-section study and rated into five groups according to MRI finding. Patients were undergoing behavioural, cognitive, motor and quality of life assessment by CBCL, Wechsler IQ, SARA and quality of life scoring respectively.

Results: Our findings highlighted that children with cerebellar malformations experience high prevalence of Cogntive as IQ ranges among our studied population between 25-99, mean was 57.7, cases with intellectual disability represented 90% of our studied population, in addition to behavioral and motor impairment as well as poor quality of life due to functional disabilities, except patients with DWM although they have favourable neurodevelopmental outcome al all patients with DWM scored FSIQ range between 91-99, but this does not prevent them from experiencing poor quality of life, as 40.0 of patients showing very poor QOL, 20.0% poor QOL, 28.3% neither poor nor good QOL, 11.7 good QOL, NO one has very good QOL

ranking 38.3 are very dissatisfied, 12% dissatisfied, 28.3 % neither satisfied nor dissatisfied, 13.3 are satisfied, no one in our study showing very satisfied way of living ranking.

Conclusion: Cerebellar malformation is heavily connected to cognition and behaviour as well as motor function.

Recommendations: Further studies need to be done in order to confirm role of cerebellum in higher orders functions like behavior, emotion processing and cognition.

Keywords: CBCL, SARA, WHOQOL BERF, Wechsler, Cerebellar malformations.

List of Contents

Title	Page
Acknowledgment	i
Abstract	iii
Contents	iv
List of Abbreviations	V
List of Figures	viii
List of Tables	xiii
Introduction	1
Aim of the Study	6
Review of literature	7
• Chapter 1: Cerebellum Embryology and Malformations	7-34
• Chapter 2: Role of Neuroimaging in the Diagnosis of Prental Cerebellar Disruption	35-40
• Chapter 3: Cerebellar and cognition	41-54
• Chapter 4: Assessment of the IQ	55-69
Methodology	70
Results	80
Discussion	128
Conclusion & Recommendations	
Summary	
References	
Appendices	
Arabic summary	-

List of Abbreviations

Abbreviation	Full Term
ADHD	Attention deficit hyperactivity disorder
AMPD2	Adenosine Monophosphate Deaminase 2
ANOVA	Analysis of variance
ASD	Autism spectrum disorders
CA	Cerebellar agenesis
CASK	Calcium/Calmodulin Dependent
	Serine Protein Kinase
CBA	Cerebellar atrophy
CBCL	Child Behavior Check list
СВН	Cerebellar hypoplasia
CC	Corpus callosum
CCAS	Cerebellar cognitive affective syndrome
CDG	Congenital Disorders of Glycosylation
CDG1A	Congenital disorder of Glycosylation type Ia
СН	Cerebellar hypoplasia
CHMP1A	Charged Multivesicular Body Protein 1A
CLP1	Cleavage and polyadenylation factor I subunit 1
CMS	Chudley-McCullough syndrome
CNS	Central nervous system
COASY	Coenzyme A Synthase
CVH	Cerebellar vermian hypoplasia
DSD	Disorder of Sex Development
DTI	Diffusion tensor imaging
DWC	Dandy-Walker complex
DWM	Dandly Walker Malformations
DWV	Dandly Walker variant
EXOSC8	Exosome complex component 8
FSIQ	Full Scale Intelligent Quotient
GCH	Global cerebellar <u>hypoplasia</u>
HS	Highly significant
ICARS	International Cooperative Ataxia Rating Scale
IQ	Intelligent quotient

Abbreviation	Full Term
IVH	Inferior vermian hypoplasia
JS	Joubert Syndrome
MCAP	Megalencephaly-capillary malformation
MCM	Mega-cisterna magna
MEB	Muscle-eye-brain disease
MPPH	Megalencephaly-polydactyly-polymicrogyria-
	hydrocephalus
MHM	Midbrain–hindbrain malformations (MHM)
MRI	Magnetic resonance imaging
MRS	Magnetic Resonance Spectroscopy
MTI	Molar tooth Image
OFC	Occipito-frontal head circumference
OMIM	Online Mendelian Inheritance in Man
P. value	Probability value
PCH	Ponto Cerebellar hypoplasia
PCLO	Piccolo presynaptic cytomatrix protein
PET	positron emission tomography
PTCD	Pontine Tegmental Cap Dysplasia
PTF1A	Pancreas Associated Transcription Factor 1a
PWI	perfusion-weighted imaging
QOL	Quality of life(QOL)
RARS2	Arginyl-tRNA synthetase 2,
RES	Rhomboencephalosynapthies
SARA	Scale for assessment and rating of Ataxia
SCA	Spinocerebellar ataxia
SCPs	superior cerebellar peduncles
SD	Standard deviation
SEPSECS	Sep (O-phosphoserine) tRNA Sec
	(selenocysteine) synthase
SMA	Spinal muscle atrophy
SPSS	Statistical Package for the Social Sciences
SWI	Susceptibility-weighted imaging

Abbreviation	Full Term
TBC1	Domain Family Member 23
TBC1D23	TBC1 Domain Family Member 23
TOE1	Target Of EGR1, Exonuclease
TSEN2	tRNA-splicing endonuclease subunit Sen2
TSEN54	tRNA splicing endonuclease complex.
UCH	Unilateral cerebellar hypoplasia
US	Ultrasound
VACTERL	Vertebral defects, Anal atresia, Cardiac defects,
	Tracheo-Esophageal fistula, Renal defects and
	Limb defects
VRK	Vaccinia-related kinase
WAIS-IV	Wechsler Adult Intelligence Scale 4 th edition
WHO	World health organization
WHOQOL	World health organization quality of life BREF
	form
WISC	The Wechsler Intelligence Scale for Children
WISC-IV	The Wechsler Intelligence Scale for Children
	4 th edition
WISC-V	The Wechsler Intelligence Scale for Children
	5 th edition
WPPSI	The Wechsler Preschool and Primary Scale of
	Intelligence-IV
WPPSI-R	Wechsler Preschool & Primary Scale of
	Intelligence Revised
WWS	Walker Warburg syndrome

List of Figures

Figure	Title	Page
Figure (1):	Dandy walker malformation	13
Figure (2):	MRI showing complete cerebellar	15
	agenesis and vermal agenesis	
Figure (3):	Rhombencephalosynapsis demonstrates	17
	continuity of the cerebellar hemispheres	
Figures (4):	Total aplasia of the right cerebellar	20
	hemisphere	
Figures (5):	Image of Joubert syndrome shows	23
	(molar tooth sign)	
Figures (6):	MR images in different PCH subtypes	32
Figure (7):	Simplified representation of main	33
	characteristic symptoms in PCH	
Figure (8):	Midsagittal T1-weighted image of	34
	pontine tegmetal cap dysplasia	
Figure (9):	Parcellation scheme used to divide the	37
	cerebellum into seven regions	
Figure (10):	Examples of cerebellar parcellations	38
Figure (11):	Depicting cerebello-cerebral	44
	connectivity network subserving	
T1 (10)	cognitive and affective processes	4 ~
Figure (12):	The microstructural organization of the	45
E' (12)	cerebellar cortex	77
Figure (13):	Flow chart detailing the study	77
E: (1.4).	population.	02
Figure (14):	Pie Chart showing sex distribution of the	82
Figure (15).	studied patients Pio Chart showing concensuinity	02
Figure (15):	Pie Chart showing consanguinity distribution among our studied patients	82
Figure (16):	Pie Chart showing oculomotor apraxia	83
Figure (16):	distribution among our studied patients	03
Figure (17):	Percentage of nystagmus among our	83
1 15u1 c (1 /).	studied patients	05

Figure	Title	Page
Figure (18):	Tone distribution of the studied patients	84
Figure (19):	Percentage of each catogrey of the	85
	studied patients according MRI findings	
Figure (20):	Percentage of the Full Scale Intelligent	87
	Quotient among our studied patients	
Figure (21):	Percentage of the Verbal Scale	87
	Intelligent Quotient among our studied	
	patients	
Figure (22):	: Illustration for the percentage of the	88
	Performance Scale Intelligent Quotient	
	among our studied patients	
Figure (23):	Percentage of the studied patients as	90
	regards the Mean Anxious T score	
Figure (24):	Percentage of the studied patients as	91
	regards the Mean Withdrawal T score	
Figure (25):	Percentage of the studied patients as	91
	regards the Mean Somatic T score	
Figure (26):	Percentage of the studied patients as	92
(regards the Mean Social T score	0.0
Figure (27):	Percentage of the studied patients as	92
F: (20)	regards the Mean Thought T score	0.2
Figure (28):	Percentage of the studied patients as	93
E' (20)	regards the Mean Attention T score	02
Figure (29):	Percentage of the studied patients as	93
	regards the Mean Rule breaking	
Figure (30).	behavior T score Percentage of the studied petients as	94
Figure (30):	Percentage of the studied patients as regards the Aggression T score	9 4
Figure (31):	The studied patients QOL scores, the	98
rigure (31).	total score ranges from 8 to 20	70
Figure (32):	The studied patients QOL ranking scores	98
Figure (33):	OFC among different groups,	100
Figure (34):	Length distribution among our studied	100
8 ()•	patients	100
	r	

Figure	Title	Page
Figure (35):	Percentage of each group as regards age	101
F: (2.0	of 1st walk and 1st spoke	101
Figure (36):	Oculomotor distribution among all	101
E: (25)	groups in correlation to MRI findings	1.02
Figure (37):	Nystagmus distribution among our	102
Figure (29).	studied patients Tone distribution among our different	102
Figure (38):	Tone distribution among our different	102
Figure (39):	groups FSIQ among different groups in	104
Figure (37).	correlation to MRI findings	104
Figure (40):	IQ range among different groups	104
Figure (41):	Verbal IQ range distribution among	105
_ , ,	different groups in correlation to MRI	
Figure (42):	Verbal IQ range among different groups	105
Figure (43):	Performance IQ distribution among	106
	different groups in correlation to MRI	
E: (44).	findings	107
Figure (44):	Performance IQ range among different	106
Figure (45):	groups CBCL scores among different groups	109
Figure (45):	Percentage of CBCL scores among MTI	109
1 1gui c (40).	group	10)
Figure (47):	Percentage of CBCL scores among CBH	110
1184110 (11)0	group	110
Figure (48):	Percentage of CBCL scores among CVH	110
<i>y</i> ()	group	
Figure (49):	Percentage of CBCL scores among PCH	111
	group	
Figure (50):	Percentage of CBCL scores among	111
	DWM group	
Figure (51):		113
Figure (52):	SARA total scores among different	113
	groups	
Figure (53):		115
	different groups	

Figure	Title	Page
Figure (54):	Negative correlation between Verbal IQ	118
	and MRI severity Score	
Figure (55):	Negative correlation between Verbal IQ	118
	and MRI severity Score	
Figure (56):	Positive correlation between somatic T	119
	score of CBCL and MRI severity Score	
Figure (57):	Positive correlation between stance	119
	item of SARA scale and MRI severity	
	Score	
Figure (58):	Positive correlation between sitting	120
	item of SARA scale and MRI severity	
(-0)	Score	4.00
Figure (59):	Positive correlation between speech item	120
E'	of SARA scale and MRI severity Score	101
Figure (60):	Positive correlation between finger	121
	chase item of SARA Scale and MRI	
Figure (61).	severity Score	121
Figure (61):	Positive correlation between nose finger	121
	item of SARA Scale and MRI severity Score	
Figure (62):	Positive correlation between Fast	122
1 igure (02).	alternating movements item of SARA	122
	scale and MRI severity Score	
Figure (63):	Positive correlation between Heel shin	122
g (11)	item of SARA Scale and MRI severity	
	Score	
Figure (64):	: Positive correlation between of SARA	123
	total score and MRI severity Score	
Figure (65):	Positive correlation between physical	123
	parameter of WHOQOL and MRI	
	severity Score	
Figure (66):	Positive correlation between	124
	Psychological parameter of QOL and	
	MRI severity Score	

Figure	Title	Page
Figure (67):	Positive correlation between	124
	Environmental parameter of WHOQOL	
	and MRI severit109y Score	
Figure (68):	Midline Sagittal view demonstrates long,	125
	thick, SCP in Joubert syndrome patients	
	(MTI)	
Figure (69):	Axial view demonstrates thin MBHB	125
	junction with deep interpeduncular fossa	
	representing molar tooth sign in Joubert	
T. (50)	syndrome patients	106
Figure (70):	Sagittal and axial view showing	126
	hypoplasia of both cerebellar	
	hemsipheres with vermian affection	
Figure (71).	Cerebellar Hypoplasia (CBH) Patients	126
Figure (71):	Sagittal and axial view demonstrate inferior vermian hypoplasia of the	120
	cerebellum in Cerebellar Vermian	
	Hypoplasia (CVH) patients	
Figure (72):	Sagittal and axial view demonstrates	127
1 igui (/ 2) (hypolpasia of the Pons, thin brain stem	12,
	with hypoplasia of cerebellum in Ponto	
	Cerebellar Hypoplasia (PCH) patients	
Figure (73):	Scale for the assessment and rating of	218
	ataxia (SARA)	
Figure (74):	The World Health Organization Quality	221
	of Life (WHOQOL)-BREF	
Figure (75):	Child Child Behavior Check list	224
Figure (76):	Hand-scored profile from the CBCL 2-3	228
	years	
Figure (77):	Hand-scored profile from the CBCL 6-	229
	16 years	

List of Tables

Table	Title	Page
Table (1):	Intelligence scoring	62
Table (2):	The studied patients clinical info and	81
	demographic data	
Table (3):	Percentage of each catogrey of the studied	85
	patients according to MRI findings	
Table (4):	Illustration of the Whole studied patients	86
	IQ.	
Table (5):	Illustration of CBCL scores among whole	89
	studied sample	
Table (6):	The studied patients SARA scores	95
Table (7):	WHOQOL scores among our studied	96
	patients	
Table (8):	The studied patients WHOQOL ranking	97
	scores	
Table (9):	The studied patients clinical info. and	99
	demographic data in correlation to MRI	
	findings	
Table (10):	FS1Q among different groups in	103
	correlation to MRI findings	
Table (11):	Comparsion between CBCL different	107
	scores among whole studied patients	
Table (12):	SARA scale among different groups	112
Table (13):	Comparison between WHOQOL	114
	parameters among different groups	
Table (14):	Comparison between WHOQOL ranking	116
	scores among different groups	
Table (15):	Correlations between MRI severity	117
	Scoring as regards age, OFC, length, age	
	of 1st walk and 1st spoke	