Cairo University
Faculty of Archaeology
Department of Conservation



## Experimental comparative study for the evaluation of the efficiency of using some traditional methods and nano materials for the treatment of biodeteriorated paper manuscripts - With application on a selected object

A Thesis
Submitted to the Conservation Department, Faculty of Archaeology,
Cairo University
For The Requirement of the Doctorate Degree
In
Conservation Science

### Submitted by

### Mohamad AbdEl-Haleem Mahmoud El-Sadany

Director of Restoration and Conservation of Islamic Antiquities in Dakahlya and Damietta.

M.Sc.,(conservation of manuscripts and verifying the authenticity of it), Cairo University, Faculty of Archaeology, Department of Conservation. (1434 A.H-2013 A.D)

### Supervision committee

### Prof. Dr. Hossam-Eldin Abdel-Hamid Mahmoud

Professor of conservation of Antiquities EX-Head of Restoration Department & EX-Vice Dean of Faculty of Archaeology, Cairo University.

### Prof. Dr. Gomaa Mohamed Mahmoud Abdel-Maksoud

Professor of Restoration & Conservation Dep. Dean of Faculty of Archaeology, Cairo University

### Dr. Amr Fouda Mahmoud Hamza

Assistant Professor of Microbial Biotechnology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo.

1441 A.H. - 2019 A.D. Cairo, Egypt





### الإجازة

أجازت لجنة المناقشة هذه الرسالة للحصول على درجة الدكتوراه في الآثار من قسم ترميم الآثار بتقدير / بمرتبة «الشرف الأولى»، مع التوصية بتبادل الرسالة مع الجامعات الأخرى.

بتاریخ ۲۰۱۹/۱۲/۳ بتاریخ ۲۰۱۹ بعد استیفاء جمیع المتطلبات اللجنة

الاسم الدرجة العلمية التوقيع

1-أ.د/ جمعه محمد محمود عبد المقصود.

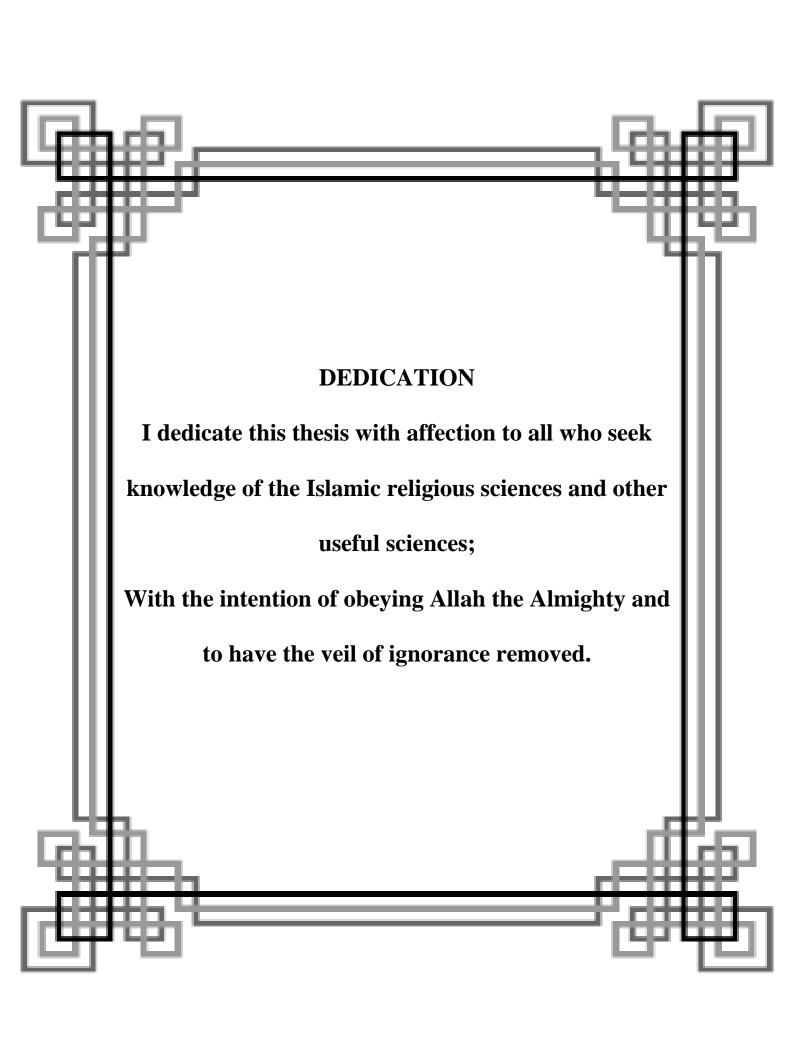
۲-أ.د/عمرو فوده محمود حمزه.

٣-أ.د/ مصطفى عطيه محى عبد الجواد.

ع ـأ.د/ محمد السيد عبد العزيز

### **ABSTRACT**

Potential high bio-deterioration of certain microorganisms due to their metabolic activities on organic materials causes serious problems in the conservation of cultural heritage. This study aims to isolation and identification of causative biodeterioration microbes and create a new approach for the treatment of biodeteriorated paper manuscripts. Macroscopic observations of collected manuscripts, isolation of microbes from the historical samples, microscopic identification for fungal isolates, identification of bacterial isolates using morphological, physiological and Vitek 2 methods were carried out in this study. Molecular identification showed that eleven bacterial species and fifteen fungal species were identified using 16S rRNA and ITS sequences, respectively. Paper models conservation effect of Ag-NPs, ZnO-NPs, AgNO<sub>3</sub> and Zn(CH<sub>3</sub>CO<sub>2</sub>)<sub>2</sub>.2H<sub>2</sub>O against strains Bacillus subtilis, Aspergillus niger and Penicillium chrysogenum was evaluated. Color change (CIE L\*a\*b\*), tensile strength and elongation, FT-IR and SEM were assessed to know the effects of microorganisms and materials used on paper properties. The manuscript under the title "Al-Mosamara Sharh Al-Mosayara", dated back to 1124 A.H, and deposit in Al-Azhar Library, Cairo, was used for the applied study. Analytical techniques and investigations used for the evaluation of the manuscript state were optical microscope, investigation of black ink, acidity ratio measurement, FTIR, SEM, EDX, XRD, and microbiological investigation. The required conservation steps of the manuscript studied were carried out and included sterilization by using 2.0mM Ag-NPs, cleaning, deacidification by Ca(OH)<sub>2</sub>-NP<sub>S</sub>, paper restoration and consolidation by Klucel G. Screening of cellulolytic activity exhibited that Bacillus subtilis, Aspergillus niger and Penicillium chrysogenum achieved the highest cellulolytic activity amongst obtained bacterial and fungal strains. The results revealed that application of 1.0 or 2.0mM silver NPs exhibited the best preservation effect on the paper models achieving 100% microbial inhibition (bacteria and fungi, respectively). The manuscript investigation showed that cellulosic fibers is cotton and the black ink is iron-gall.


### **Key words**

| Paper manuscripts         |
|---------------------------|
| <b>Bio-deterioration</b>  |
| Whatman filter-paper      |
| Silver nano-particles     |
| Zinc oxide nano-particles |
| Silver nitrate            |
| Zinc acetate              |
| Aspergillus niger         |
| Penicillium chrysogenum   |
| Bacillus subtilis         |
|                           |

# بنيال المحالية

## (... يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنْكُو وَالَّذِينَ أُوتُوا الْعِلْوَ حَرَجَاتِ وَاللَّهُ مِمَا تَعْمَلُونَ خَبِيرً)

(المجادلة: آية ١١)



### **Acknowledgements**

First, I start praising *Allah Almighty* purely and simply for the blessings He has bestowed upon me to complete this study-asking Allah to accept of, and reward me.

Our thanks to **Prof. Dr.** *Hossam Eldin Abdel-Hamid Mahmoud*, who provided a lot of guidance and assistance to complete this work. However, he died while supervising it. I sincerely direct my supplication to *Allah Almighty* to forgive him with his mercy and admit him to paradise.

My sincere gratitude is reserved for my supervisor **Prof. Dr.** Gomma Mohamad Abdel-Maksoud, for his effort and constructive criticism in completing my thesis. He informed me of the highest scientific standards and helped me overcome the difficulties faced by the research. I ask Allah to reward him greatly.

I would like to thank my co-supervisor **Prof. Dr.** *Amr Fouda Mahmoud Hamza*, who has given me so much of his time and effort, especially in the laboratory experiments to complete my thesis, data analysis and scientific standards for the publishing of international research. I ask *Allah* to reward him greatly for his sincere works.

Also greatly thankful to **Dr.** *Mohamed Ali Abdel-Rahman*, **Dr.** *Saad El-Din Hassan.*, **Dr.** *Salem S. Salem*, **Dr.** *Ahmed Mohamed Eid*, and **Dr.** *Mohammed G. Barghoth* (Members of microbial physiology lab, botany and microbiology department, faculty of science, Al-Azhar university) for helping in experimental study, data analysis and greatly effort in data publishing.

I cannot forget to express my sincere gratitude to all distinguished persons such as **Prof. Dr.** *Mostafa Attia Mohie Abdel Gawad*, Prof. Dr. *Abdul Latif Afandi* for all their guidance, advice and help in the master stage that serves as the foundation for my doctoral dissertation.

I also thank **Prof. Dr.** Shahhat Mohamad Ramadan, Professor of Microbiology, Faculty of Agriculture, Ain Shams University, for his good guidance and advice to me in the early stage of a doctorate. I also would like to express thanks to **Dr.** Mahmoud Morsi, in the National Institute of Standard, **Prof. Dr.** Abd-Allah AbdEl-Fattah Mousa, Head of Dyeing, Printing and Intermediate Department, Central Lab, Textile Research Center, Dokki, Giza, Egypt. **Dr.** Sherif Omar Mohamad, **Dr.** Niazi Mustafa, **Mrs.** Fatema, the director of religious institute library in Damietta city, **Mr.** Sobhi AbdEl-Menhem Salama and **Mr.** Mostafa Ebraheem Mohamad El-Sayed for informing some items of the documentation and analysis to me.

Also, I take this opportunity to express my endless gratitude and indebtedness to *my parents* for what they have given me. They supported me at every turn. Everything that I will ever accomplish, I owe to *Allah* and then, to my parent's sacrifices. I ask *Allah* to make my parents steadfast in adhering to his obedience. I ask *Allah* the Exalted to keep them safe.

I would also like to express my heartfelt thanks to *my wife*, and our four children, *Zainab*, *Bassam*, *Khaled* and *Amr*, for creating the appropriate conditions in our home for the completion of this research. I ask *Allah* to bless them and benefit them Islam and Muslims. I cannot forget to thank all of my brothers; Mr. *Ahmed*, Mr. *Khaled*, Dr. *Emad*. Thanks also to my four sisters; Mrs. *Souaad*, Mrs. *Samia*, Mrs. *Faten* and Mrs. *Nadia* for their unwavering support.

Finally, I would like to thank everyone else who helped me in shaping up this thesis and I hope that Allah the Almighty will accept our deeds.

Mohamad AbdEl-Haleem Mahmoud El-Sadany

### ≪ Index >>

### Index

| List of contents                                                  |      |
|-------------------------------------------------------------------|------|
| The title                                                         | Page |
|                                                                   | No.  |
| List of contents                                                  | I    |
| List of figures                                                   | V    |
| List of tables                                                    | VIII |
| Introduction                                                      | 1    |
| Aim of study                                                      |      |
| Summary                                                           |      |
| Previous studies                                                  | 10   |
| Chapter one: Theoretical backgrounds                              | 32   |
| 1. The dominant microorganisms causing biodetrioration of         | 32   |
| manuscripts                                                       |      |
| 1.1. Fungi                                                        | 32   |
| 1.2. Bacteria                                                     | 37   |
| 1.3. Actinomycetes                                                | 38   |
| 2. Traditional chemical methods used for the treatment of         | 39   |
| biodeteriorated paper manuscripts                                 |      |
| 2.1. Ethyl alcohol                                                | 40   |
| 2.2. Paradichlorobenzene (p-DCB)                                  | 41   |
| 2.3. Formaldehyde                                                 | 42   |
| 2.4. Thymol (2-Isopropyl-5-methylphenol)                          | 43   |
| 2.5. Phenol derivatives:                                          | 45   |
| 2.5.1. Ortho-phenylphenol (OPP)                                   | 45   |
| 2.5.2. paranitro-phenol and pentachlorophenol                     | 46   |
| 2.5.3. Dichlorophen                                               | 47   |
| 2.6. Methyl bromide (CH <sub>3</sub> Br)                          | 47   |
| 2.7. Guanidine                                                    | 48   |
| 2.8. Sulfuryl fluoride (Vikane)                                   | 49   |
| 2.9. Hydrogen peroxide                                            | 50   |
| 2.10. Parabens (p-hydroxybenzoles)                                | 51   |
| 2.11. Chitosan                                                    | 51   |
| 2.12. Ethylene oxide (ETO)                                        | 53   |
| 3. Nanomaterials used in treatment of deteriorated                | 55   |
| manuscripts                                                       |      |
| 3.1. Definition of nanomaterials and its types according to their | 55   |

| source                                                                               |    |
|--------------------------------------------------------------------------------------|----|
| 3.2. The nanometer scale                                                             | 56 |
| 3.3. Synthesis of nanomaterials and their main properties                            | 56 |
| 3.4. Nanoparticles                                                                   | 57 |
| 3.4.1. Examples of some nanoparticles used against the                               | 58 |
| microorganisms                                                                       |    |
| 3.4.1.1. Nanoparticles of titanium dioxide Tio <sub>2-</sub> NPs                     | 58 |
| 3.4.1.2. Silver nanoparticles Ag-NP <sub>S</sub>                                     | 59 |
| 3.4.1.3. Zinc oxide nanoparticles                                                    | 60 |
| 3.4.2. The inhibitory mechanism of Nanoparticles on                                  | 62 |
| Microorganisms                                                                       |    |
| 4. Precautions should be taken during selection of biocidal                          | 63 |
| compounds used in paper deteriorated treatment                                       |    |
| Chapter two: Materials and methods                                                   | 64 |
| 1. Experimental study                                                                | 64 |
| 1.1. Study area                                                                      | 64 |
| 1.2. Sample collections                                                              | 65 |
| 1.3. Bacterial and fungal isolations                                                 | 68 |
| 1.4. Identification of microbial isolates                                            | 68 |
| 1.5. Screening of cellulolytic activity                                              | 76 |
| 1.6. Biosynthesis and characterization of Ag-NPs and ZnO-NPs                         | 76 |
| 1.7. Growth of most potent cellulolytic bacterial and fungal isolate                 | 76 |
| on paper treated by nanoparticles (NPs) and/or chemical                              |    |
| compounds                                                                            |    |
| 1.7.1. Assessment of microbial growth on paper previously treated with material used | 79 |
| 1.8. Screening the effects of microorganisms and materials used on                   | 80 |
| paper properties                                                                     |    |
| 1.8.1. Measurement of color changes using UV                                         | 80 |
| spectrophotometry                                                                    |    |
| 1.8.2. Tensile strength and Elongation                                               | 80 |
| 1.8.3. Fourier Transform Infrared Spectroscopy (FT-IR)                               | 81 |
| 1.8.4. Scanning electron microscope (SEM-EDX)                                        | 81 |
| 2. Applied study                                                                     | 82 |
| 2.1. The manuscript studied                                                          | 82 |
| 2.2. Documentation of the manuscript                                                 | 82 |
| 2.3. Methods for investigation and analysis                                          | 84 |
| 2.4. Conservation steps                                                              | 89 |
| 2.4.1. Sterilization                                                                 | 89 |

| 2.4.2. The leather bookbinding conservation                                          | 90  |
|--------------------------------------------------------------------------------------|-----|
| 2.4.3. Paper conservation                                                            | 90  |
| Chapter three: Experimental study                                                    | 93  |
| Macroscopic observation of the historical manuscripts and books                      | 93  |
| used for microbial isolation                                                         |     |
| 2. Fungal and bacterial isolation and identification                                 | 105 |
| 3. Screening of cellulolytic activity                                                | 118 |
| 4. Biosynthesis and characterization of Ag-NPs and ZnO-NPs                           | 121 |
| 5. Assessment of microbial growth on whatman filter paper                            | 123 |
| previously treated with materials used                                               |     |
| 6. Screening the effects of microbial growth and materials used on                   | 127 |
| paper properties                                                                     |     |
| 6.1. Color changes of treated papers with/without microbial                          | 127 |
| inoculation                                                                          |     |
| 6.2. Tensile strength and Elongation                                                 | 138 |
| 6.3. Fourier Transform Infrared Spectroscopy (FT-IR)                                 | 145 |
| 6.4. Scanning Electron Microscope (SEM- EDX)                                         | 151 |
| Chapter four: Applied study                                                          | 159 |
| 1. Documentation of the manuscript "Al-Mosamara Sharh Al-                            | 159 |
| Mosayara".                                                                           |     |
| A. Archaeological documentation                                                      | 159 |
| B. Digital photography documentation                                                 | 160 |
| C. Documentation of deterioration aspects                                            | 164 |
| 2. Methods for investigation and analysis                                            | 173 |
| 2.1. Optical Microscope                                                              | 173 |
| 2.2. Identify the kind of black ink                                                  | 174 |
| 2.3. Acidity ratio measurement                                                       | 174 |
| 2.4. Fourier Transform Infrared Spectroscopy (FTIR)                                  | 176 |
| 2.4.1. Paper samples                                                                 | 176 |
| 2.4.2. Ink samples                                                                   | 177 |
| 2.5. Scanning Electron Microscope (SEM- EDX)                                         | 179 |
| 2.5.1. paper samples                                                                 | 179 |
| 2.5.2. Black ink sample                                                              | 182 |
| 2.6. X-ray Diffraction (XRD)                                                         | 183 |
| 2.6.1. X-Ray diffraction analysis (XRD) for the determination of paper crystallinity | 183 |
| 2.6.2. X-Ray diffraction analysis (XRD) of the red ink sample                        | 184 |
| 2.7. Microbiological investigation                                                   | 185 |
| 3. Conservation steps                                                                | 187 |
| •                                                                                    | i   |

| 3.1. Sterilization                                   | 187 |
|------------------------------------------------------|-----|
| 3.2. Conservation of leather bookbinding             | 188 |
| 3.3. Conservation of paper                           | 192 |
| 3.3.1. Pre-restoration of the paper                  | 192 |
| 3.3.2. Paper cleaning                                | 194 |
| 3.3.3. Deacidification                               | 195 |
| 3.3.4. Paper restoration                             | 197 |
| 3.3.5. Consolidation                                 | 201 |
| <b>Chapter five: Conclusions and recommendations</b> |     |
| 1. Conclusions                                       | 204 |
| 2. Recommendations                                   | 209 |
| References                                           |     |
| Arabic summary                                       | Í   |

### - <u>List of figures</u>

| Fig.        | Title of fig.                                                                                                          | Page |
|-------------|------------------------------------------------------------------------------------------------------------------------|------|
| No.         |                                                                                                                        | No.  |
| 1           | Fungal and insect infection                                                                                            | 36   |
| 2           | Chemical structures of ethyl alcohol                                                                                   | 40   |
| 3           | Chemical structures of paradichlorobenzene                                                                             | 42   |
| 4           | Chemical structures of Formaldehyde                                                                                    | 43   |
| 5           | Chemical structures of Thymol (2-Isopropyl-5-methylphenol)                                                             | 44   |
| 6           | Chemical structures of Ortho-phenylphenol                                                                              | 45   |
| 7           | Chemical structures of pentachlorophenol                                                                               | 47   |
| 8           | Chemical structures of Methyl bromide                                                                                  | 48   |
| 9           | Chemical structures of Guanidine                                                                                       | 48   |
| 10          | Chemical structures of Sulfuryl Fluoride (Vikane)                                                                      | 49   |
| 11          | Chemical structures of Hydrogen peroxide                                                                               | 50   |
| 12          | Chemical structures of Chitin, Chitosan and cellulose                                                                  | 52   |
| 13          | Chemical structures of Ethylene oxide                                                                                  | 53   |
| 14          | General mechanisms of Ag-NPs as antimicrobial agent                                                                    | 62   |
| 15          | Storage conditions in different libraries                                                                              | 64   |
| 16          | Outline for the experimental design used for the assessment of                                                         | 79   |
|             | untreated/treated papers with different concentrations of Ag-NPs,                                                      |      |
|             | ZnO-NPs, AgNO3 and Zn(CH3CO2)2.2H2O with/without of                                                                    |      |
| <del></del> | microbial growth Some devices used                                                                                     | 87   |
|             |                                                                                                                        | 94   |
| 18          | Illustration of color changes and deterioration of some pages from                                                     | 94   |
| 19          | the "Al-Tagreed Ala Moktasar El-Saad El-Taftazany"  Illustration of color changes and deterioration of some pages from | 95   |
| 19          | Illustration of color changes and deterioration of some pages from                                                     | 93   |
| 20          | the "Lopap El-Taweel wa Maalem Al-Tanzeel".                                                                            | 0.6  |
| 20          | Illustration of color changes and deterioration of some pages from                                                     | 96   |
| -01         | the "Serah Senk Adlaky Geld Badr"                                                                                      | 07   |
| 21          | Illustration of color changes and deterioration of some pages from                                                     | 97   |
|             | the "Emad El-Eslaam fee Targamet Omdat El-Eslaam".                                                                     | 00   |
| 22          | Illustration of color changes and deterioration of some pages from                                                     | 99   |
|             | the "five parts of Qur'an"                                                                                             | 101  |
| 23          | Illustration of color changes and deterioration of some pages from                                                     | 101  |
|             | the Other volume of "Description De L'Egypte".                                                                         | 100  |
| 24          | Illustration of color changes and deterioration of some pages from                                                     | 102  |
| 25          | the "sharh al-seragya fee el-frayeed".                                                                                 | 102  |
| 25          | Illustration of color changes and deterioration of some pages from                                                     | 103  |
|             | the manuscript "Selcoti Alaa al-tasdekat".                                                                             |      |

| 26 | Illustration of color changes and deterioration of some pages from         | 104 |
|----|----------------------------------------------------------------------------|-----|
|    | the manuscript "Mokhtar Al-Sahah".                                         |     |
| 27 | Morphological and microscopic characterization of some fungal              | 109 |
|    | strains.                                                                   |     |
| 28 | Microscopic view of Gram reaction for some bacterial isolates.             | 110 |
| 29 | Phylogenetic analysis of ITS sequences of the fungal strain                | 114 |
|    | retrieved from manuscript "Serah Senk Adlky Geld Badr" with the            |     |
|    | sequences from NCBI.                                                       |     |
| 30 | Phylogenetic analysis of 16s rRNA sequences of the bacterial               | 117 |
|    | strain retrieved from manuscript "Serah Senk Adlky Geld Badr"              |     |
|    | with the sequences from NCBI.                                              |     |
| 31 | Characterization of biosynthesized Ag-NPs and ZnO-NPs.                     | 122 |
| 32 | The growth of Bacillus subtilis B3 after 21 days on whatman filter         | 125 |
|    | paper previously treated with materials used                               |     |
| 33 | FT-IR chart of standard filter paper, negative control and treated         | 147 |
|    | filter paper without microbial inoculation.                                |     |
| 34 | FT-IR chart of filter paper inoculated with <i>Bacillus subtilis</i> B3.   | 148 |
| 35 | FT-IR chart of filter paper inoculated with A. niger F35.                  | 149 |
| 36 | FT-IR chart of filter paper inoculated with <i>P. chrysogenum</i> F9.      | 150 |
| 37 | SEM image for filter paper previously treated with 1 mM and 2              | 153 |
|    | mM of the materials used without microbial inoculation.                    |     |
| 38 | SEM image of treated filter paper inoculated with <i>Bacillus subtilis</i> | 155 |
|    | B3.                                                                        |     |
| 39 | SEM image for treated filter paper with Aspergillus niger                  | 156 |
|    | inoculation.                                                               |     |
| 40 | SEM image for treated filter paper samples with <i>Penicillium</i>         | 158 |
|    | chrysogenum inoculation.                                                   |     |
| 41 | Digital photography documentation of archaeological manuscript.            | 161 |
| 42 | Archaeological manuscript documentation of the general shape of            | 162 |
|    | the manuscript and watermarks.                                             |     |
| 43 | Archaeological manuscript documentation of paper support of the            | 163 |
|    | leather and using UV light.                                                |     |
| 44 | visual deterioration aspects of archaeological manuscript.                 | 167 |
| 45 | Tears of the manuscript as deterioration aspect.                           | 168 |
| 46 | Leather bookbinding before either cleaning or removing the                 | 169 |
|    | alternative spine (AutoCAD).                                               |     |
| 47 | Leather bookbinding after cleaning and unfolding the edges                 | 170 |
|    | (AutoCAD).                                                                 |     |
| 48 | Side view of bottom edge of the manuscript (AutoCAD).                      | 170 |