

Ain Shams University
Faculty of Engineering
Structural Department

Behavior of Post-tensioned Simply Supported Deep Beams

By

Eman Mohamed Mamdouh Mousa El-Gamal

B.Sc. (2009), Structural Division
Civil Engineering Department
Faculty of Engineering, Ain Shams University
A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering (Structural Dept.)

Supervised by

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures
Ain Shams University
Faculty of Engineering

Dr. Mahmoud Mohamed El-Kateb

Assistant Professor, Structures Engineering Dept.

Ain Shams University

Faculty of Engineering

Cairo - 2019

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

Behavior of Post-tensioned Simply Supported Deep Beams

By

Eman Mohamed Mamdouh Mousa El-Gamal

B.Sc. (2009), Structural Division
Civil Engineering Department
Faculty of Engineering, Ain Shams University
Cairo- Egypt

EXAMINERS COMMITTEE

	<u>Signature</u>
Prof. Dr. Adel Galal el Ataar	•••••
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Cairo University	
Prof. Amr Hussein Abdel Azim Zaher	
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Ain Shams University	
Prof. Ayman Hussein Hosny Khalil	
Professor of Reinforced Concrete Structures	
Faculty of Engineering - Ain Shams University	

Date: Des. 2019

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, as a partial

fulfillment of the requirements for the degree of Master of Science (M.Sc.) in

Civil Engineering (Structural), Faculty of Engineering, Ain shams University.

The experimental and numerical works included in this thesis was carried out by

the Author at Ain Shams University, Facility of Engineering lab, Cairo, Egypt

No part of this thesis has been submitted for a degree or qualification at any other

University or Institute.

Name: Eman Mohamed Mamdouh El- Gamal

Signature: Eman El-Gamal

Date :

Des. 2019

II

RESEARCHERER DATA

Name : Eman Mohamed Mamdouh El-Gamal

Date of birth : 18 November 1986

Place of birth : Cairo, Egypt

Academic Degree : B.Sc. & in Structural Engineering

University : Ain Shams University

Date : June 2005 - October 2009

Current job : Senior structural engineering

ABSTRACT

The deep beam is a beam having a large depth/thickness ratio and shear span depth ratio. Because the geometry of deep beams, their behavior is different from the slender beam. Deep beams have many applications for both residential and commercial building structures such as transfer girders, transfer caps of high-rise buildings and as part of a lateral load resisting system (Outriggers)...etc. The use of deep beams has increased rapidly because of their convenience and economic efficiency. Using post-tensioning (PT) in deep beams offers many advantages like significant reduction of reinforcement, high durability, greater stiffness, and hence better cracking and deflection behavior.

The prime objective of the thesis is to study the contribution of post-tensioned cables to the main reinforcement of the deep beam and the optimum ratio of (vertical stirrups to side bars) from the required shear reinforcement of the deep beams.

An experimental program is carried out for five simply supported post-tensioned deep beams with 1200 mm clear span, height of 500 mm and a width of 220 mm were fabricated and tested in the laboratory of Faculty of Engineering, Ain Shams University. A linear finite-element analysis software (ADAPT PT-RC 2015) were used to investigate the behavior of post-tensioned concrete simply supported beams under gravity load with the same parameter of tested specimens. The failure was occurred due to the ultimate flexural load of each specimen. Change in post-tensioned system (bonded or unbonded) and a different ratio of vertical stirrups to side bars varying from 0% to 100% from the required shear reinforcement of the deep beams is also studied. All post-tensioned deep beams were exposed to gravity concentrated load at mid-span up to failure for each combination of parameters. The load was increased gradually till failure. The design of post-tensioned and the design of deep beams was carried out according

to the Egyptian Code of Practice ECP203-2018. The experimental results show that using post tensioning cables (applying early compression load) to the deep beams enhances the capacity of the beams. Besides, greater stiffness and hence better cracking and deflection behavior were found. Also, experiment show that in the present of post-tensioned cables the horizontal web reinforcement is less effective in providing shear strength than the vertical web reinforcement. So it is found that decreasing the distance between stirrups (Increase vertical shear reinforcement) tends to increase cracking load value, which is because the shear ductility of reinforced concrete deep beams increases due to the contribution of the stirrups. Also experiment show that for all specimens with the bonded post-tensioned system, flexure capacity is larger compared to specimens with an unbonded post-tensioned system.

ACKNOWLEDGMENTS

First of all, I would like to express my great thanks to **Allah**, who gave me the strength, ability, and conciliation to achieve this work.

Then I would like to record and express my sincerest gratitude and appreciation to my advisor, **Prof. Dr. Ayman Hussein Hosny**. I will fondly remember the hours upon hours of conversations with him discussing post tensioning in reinforced concrete, and many other technical topics.

I would also like to extend sincere thanks to my advisors, **Dr. Mahmoud Mohamed El-Kateb** for his guidance, expert instruction, and the investments they have made in me throughout the research duration, allowing me to be involved in such interesting research.

Many people supported me in ways beyond what I could have asked for during the completion of this thesis. I would like to thank STRAND Company especially Eng. Ramy Kamal and Eng. Gehad Tarek for their support and cooperation with me to complete the experimental program.

Most importantly, I would like to thank my husband Mohamed Awad, his unwavering love and support significantly contributed to my success throughout the completion of this thesis. I lovingly dedicate this to him. Also, I would not be where I am today if it weren't for the support and love of my parents, sisters, and brother, Thank you for always helping me be my best.

LIST OF CONTENT

CHAPTER (1) INTRODUCTION	1
1.1 General	1
1.2 Objectives and Scope	3
1.3 Thesis outlines	4
CHAPTER (2) LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Prestressed concrete	5
2.2.1 Prestressed concrete objective	5
2.2.2 Prestressed concrete concept	6
2.2.3 Prestressed concrete systems	7
2.2.4 Comparison between bonded and unbonded post-tensioning	9
2.2.5 Tendon profile	11
2.3 Prestressed concrete design	12
2.4 Prestressed concrete strength calculation	13
2.5 Prestressed concrete flexural behavior	13
2.6 Codes' flexural strength calculation procedure	16
2.6.1 Egyptian Code ECP 203-2018	
2.6.2 British Standard BS8110-97 [3]	18
2.6.3 American Concrete Institute ACI 318-14 ^[4]	19
2.7 Codes' Shear strength calculation procedure for deep beams	22
2.7.1 Egyptian Code ECP 203-2018	22
2.7.2 American Concrete Institute (ACI 318-14)	27
2.7.3. CIRIA Guide [5]	31
2.8 Behavior and strength of post-tensioned concrete deep beams	32
2.9 Previous studies on Deep beams:	33

2.9.1 Direct Strut-And-Tie Model for Prestressed Deep Beams	33
2.9.2 Tan and Mansur STM model [7]	38
2.9.3 Evaluation of Behaviour and Strength of Prestressed Con	ncrete
Deep Beams Using Nonlinear Analysis BY T. H. K i m, J.H. C	Cheon
and H.M. Shin [8]	40
2.9.4 Guo. Lin et al. MSTM predictions [9]	45
2.9.5 Kong and Robins [10]	46
2.9.6 Ramakrishnan and Ananthanarayana [11]	48
CHAPTER 3 EXPERIMENTAL PROGRAM	50
3.1 Introduction	50
3.2 Material Properties:	50
3.2.1 Concrete	50
3.2.2 Un-tensioned reinforcement	51
3.2.3 Post-tensioned system	52
3.3 Sample configuration	53
3.4 Samples parameters	55
3.5 Formwork	60
3.6 Fabrication of Test Specimens	60
3.7 Procedures of Post-tensioning	61
3.8 Test setup and Loading program	64
3.9 Instrumentation	66
3.9.1 Load Cell	66
3.9.2 LVDT's	66
3.9.3 Strain Gauges	67
3.9.4 Data Acquisition	69

CHAPTER 4 ANALYSIS AND DISCUSSION OF

EXPERIMENTAL RESULTS	70
4.1 Introduction	70
4.2 Crack Initiation and Propagation	70
4.3 Crack Pattern and Failure Mode	71
4.4 Control specimen (Post-tensioned Deep Beam B11):	72
4.5 Effect of change in ratio of stirrups to horizontal bars:	73
4.6 Effect of change in post-tensioned system (bonded or un	nbounded
cables) and change in the ratio of stirrups to horizontal ba	ars (Post-
tensioned deep beams U11 and U10):	74
4.7 Summary of experimental test result	776
4.7.1 Cracking Loads and Failure Loads	76
4.7.2 Cracking Widths	76
4.7.3 Ductility of PT deep beams	77
4.8 Deformations of Tested Specimens	77
4.9 Effect of existing of horizontal bars for all post-tension	ned deep
beams	78
4.10 Strain of Steel bars of tested specimens	78
4.11 Strain of post-tensioned cables of Tested Specimens	79
4.12 Strain of concrete of Tested Specimens:	80
CHAPTER 5 THEORETICAL INVESTIGATION	82
5.1 Introduction:	82
5.2 Mathematical model	83
5.2.1 Model types	83
5.2.2 Material properties in the models	84
5.2.3 Geometry	85

5.2.4 Support Boundary Conditions	86
5.2.5 Applied Load	87
5.3 Result	88
5.4 Compere between program and experimental results	88
5.5 Analysis of post-tensioned deep beam capacity in t	he light of
ECP203-2018	89
5.5.1 Failure load calculations for Post-tensioned deep bear	n: 89
5.5.2 Shear reinforcement calculation for deep beam	88
5.6 Compere between ultimate shear capacity from experim	nental results,
ADAPT program and previous mentioned studies on prestre	essed deep
Beams	89
CHAPTER 6 SUMMARY, CONCLUSION AND	
RECOMMENDATIONS	92
6.1 Summary	92
6.2 Conclusion	93
6.3 Recommendations:	94
REFERENCES	95
APPENDIX (1)	96

LIST OF FIGURES

Figure 2.1 Prestressed concrete concept	6
Figure 2.2 Typical construction procedure for pre-tension system	7
Figure 2.3 Bonded Post tension systems	8
Figure 2.4 Bonded post-tension system procedure	8
Figure 2.5 Unbonded Post tension systems	9
Figure 2.6 Different types of cables profile in beams	.12
Figure 2.7 Stress and strain distributions caused by increasing moment	. 15
Figure 2.8 a) Strain distribution, b) Stress dist. and c) Equivalent block for EQ	CP
203 2018	. 16
Figure 2.9 a) Strain distribution, b) Stress distribution and c) Equivalent bloc	k
for BS8110-97	. 18
Figure 2.10 Variation of φ with net tensile strain in extreme tension steel	. 20
Figure 2.11 a) Strain distribution, b) Stress distribution and c) Equivalent block	ck
for ACI 318-14.	.21
Figure 2.12 Critical section in shear design	. 23
Figure 2.13 Strut and Tie Model for deep beam	. 27
Figure 2.14 Notation for the Ciria guide Code method	.31
Figure 2.15 Proposed Strut-and-Tie Model	. 34
Figure 2.16 Details of Post-tensioned Deep Beams	. 36
Figure 2.17 Strut-and-tie truss model for (Tan and Mansur)	.38
Figure 2.18 Crack pattern for Single point loading prestressed deep beam	.40
Figure 2.19 Details of test specimens and setup	.42
Figure 2.20 Details of test specimens and setup	.43
Figure 2.21 Failure pattern for specimen S24: (a) experiment and (b) analysis	44
Figure 2.22 Notation in Kong and Robin's method	.46

Figure 2.23	47
Figure 3.1 Bonded post-tensioned system	53
Figure 3.2 Permanent mono-strand anchorage and corrugated plastic duct	
section.	53
Figure 3.3 Specimen dimensions	. 54
Figure 3.4 Reinforcement details of tested specimens	54
Figure 3.5 Post-tensioned system details of tested specimens	55
Figure 3.6 Reinforcement details for specimen (B11)	57
Figure 3.7 Reinforcement details for specimen (B21)	58
Figure 3.8 Reinforcement details for specimen (B10)	58
Figure 3.9 Reinforcement details for specimen (U11)	59
Figure 3.10 Reinforcement details for specimen (U10)	59
Figure 3.11 Preparation of formwork	60
Figure 3.12 Placement of concrete	61
Figure 3.13 Removing of formwork After 10 Days from casting date	61
Figure 3.14 Applying stress on strands by using hydraulic jack	. 62
Figure 3.15 Measure the elongation for each strand after applying jacking for	rce
	. 63
Figure 3.16 Applying Manual injection to the cable ducts for bonded cables.	. 64
Figure 3.17 Test setup for tested specimens	. 65
Figure 3.18 Loading setup for tested specimens	. 65
Figure 3.19 Locations of LVDT'S in the specimens	. 67
Figure 3.20 Locations of the two steel strain gauges in all specimens	. 68
Figure 3.21 Locations of the two concrete strain gauges in all specimens	68
Figure 3.22 Data acquisition device and channel box	. 69
Figure 4.1 First Flexural cracks pattern at mid-bottom of the beam web	70

Figure 4.2 Flexural cracks pattern	.71
Figure 4.3 Crack pattern and failure shape for specimen (B11)	.73
Figure 4.4 Crack pattern and failure shape for specimen (B21)	.73
Figure 4.5 Crack pattern and failure shape for specimen (B10)	. 74
Figure 4.6 Crack pattern and failure shape for specimen (U11)	. 75
Figure 4.7 Crack pattern and failure shape for specimen (U10)	.75
Figure 4.8 Summary of the experimental test results	756
Figure 4.9 Load versus vertical deflection for all tested specimens	78
Figure 4.10 Load versus steel strain for all tested specimens	.79
Figure 4.11 Load versus post-tensioned cables strain for all tested specimens	. 80
Figure 4.12 Load versus concrete strain for all tested specimens	. 80
Figure 5.1 Concrete Compressive Strength	. 84
Figure 5.2 Steel Reinforcement Properties	. 84
Figure 5.3 Post-tensioned Materials Properties (for Bonded PT System)	. 85
Figure 5.4 Deep Beams Span Geometry	. 85
Figure 5.5 Non-Prestressed Reinforcements	. 86
Figure 5.6 Tendon Height Diagram	.86
Figure 5.7 Support Boundary Conditions	. 87
Figure 5.8 Support Geometry and Stiffness	. 87
Figure 5.9 Applied Live Load	. 88
Figure 5.10 PT Deep Beam B11 Ultimate Loads	.91
Figure 5.11 PT Deep Beam U11 Ultimate Loads	.91

LIST OF TABLES

Table 2-1 Conditions at the ultimate limit state for rectangular beams with pr	re-
tensioned tendons or post-tensioned tendons having effective bond	19
Table 2-2 Tan and Mansur Experimental test results	39
Table 3-1 Concrete mix design by Weight (KG/m3)	51
Table 3-2 Reinforcement properties	51
Table 3-3 Specimens stirrups to side bars ratio	56
Table 3-4 Specimen's matrix	57
Table 4-1 Experimental post-tensioned deep beams failure loads versus	
calculated failure load refer to ECP203-2018 design values	72
Table 5-1 Experimental post-tensioned deep beams versus ADAPT PT-RC	
Program calculated failure load and maximum deflection at mid span	89