USING SOME CHEMICALLY MODIFIED AGRICULTURE WASTES AND NATURAL CLAYS IN THE TREATMENT OF INDUSTRIAL WASTEWATER

Submitted By

Hoda Mohamed Ismail Youssef

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 1990

Diploma in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2007

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2020

APPROVAL SHEET

USING SOME CHEMICALLY MODIFIED AGRICULTURE WASTES AND NATURAL CLAYS IN THE TREATMENT OF INDUSTRIAL WASTEWATER

Submitted By Hoda Mohamed Ismail Youssef

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 1990
 Diploma in Environmental Sciences, Institute of Environmental Studies and Research,
 Ain Shams University, 2007

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences
Department of Environmental Basic Sciences

Signature

This thesis was discussed and approved by:

The Committee

1-Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry Faculty of Science Ain Shams University

2-Prof. Dr. Mohamed Gharib El-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences -Institute of Environmental Studies & Research Ain Shams University

3-Dr. Ashraf Ibrahim Shehata Hafez

General Manager of Chemistry Egyptian Electricity Holding Company **4-Prof. Dr. Eid Metwally Khalil**

Prof. of Organic Chemistry Faculty of Science Helwan University

5-Prof. Dr. Rabab Mahmoud Ahmed Al Sherif

Prof. of Physical Chemistry Faculty of Science Cairo University

USING SOME CHEMICALLY MODIFIED AGRICULTURE WASTES AND NATURAL CLAYS IN THE TREATMENT OF INDUSTRIAL WASTEWATER

Submitted By Hoda Mohamed Ismail Youssef

B.Sc. of Science (Chemistry), Faculty of Science, Ain Shams University, 1990

Diploma in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2007

Master in Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry Faculty of Science Ain Shams University

2-Prof. Dr. Mohamed Gharib El-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences -Institute of Environmental Studies & Research Ain Shams University

3-Dr. Ashraf Ibrahim Shehata Hafez

General Manager of Chemistry Egyptian Electricity Holding Company

2020

ACKNOWLEDGMENT

At First, I thank **GOD** for being giving me the power to complete this work successfully and all his gifts along my life

Then I would like to thank all those who have helped me to make this work a success.

So, I wish to refer my deep appreciation and gratitude

To

Prof. Dr. Ahmed Ismail Hashem Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.

Prof. Dr. Mohamed Ghrib Almalky, Professor of Geology, Department of Environmental Basic Sciences
Institute of Environmental Studies and Research,`

Œ,

Dr. Ashraf Ibrahem Shehata Hafez,

General Manager of Chemistry Egyptian Electricity Holding Company.

For

Suggesting the subject, interpreting the results, their valuable scientific guidance, help, and encouragement during the work of this thesis.

LIST OF ABBREVIATIONS

AAS Atomic absorption spectrometry

ACC Amphoteric corncobs

Ammonia fiber expansion AFEXTM

anionic polymers include **APAMs**

Biological oxygen demand BOD

CCC Cationic Corncobs.

Carboxy methyl cellulose **CMC**

Chemical Oxygen Demand COD

Cationic Polyacrylamides **CPAMs**

ammonium salt 3-chloro-2-hydroxypropyl- triethanol amine chloride **CTAC**

Epichlorohydrin/dimethylamine polymers ECH/ DMA

Ethyline diamante tetra acetic acid **EDTA**

Energy Dispersive X-ray EDX

IR Infrared spectroscopy

Natural organic matter NOM

Nephelometry turbidity Unit NTU

Polyacrylamides **PAMs**

PDAD MAC diallyldimethylammonium chloride

quaternized cellulose derivatives QCs

☐ List of Abbreviations

STPs sewage treatment plants

TDS Total dissolved solid

TGA Thermogravimetric analysis

TSS Total suspended solid

USEPA United states environmental protection agency

WHO World Health Organization

Contents

Contents	
Abstract	
List of Tables	
List of Figures	VII
Chapter (1):	
INTRODUCTION & OBJECTIVES	2 -
1.1. Introduction	2 -
1.2. Research Objectives	6 -
Chapter (2):	
LITERATURE REVIEW	
2.1. Water classification:	
2.2. Raw water characteristics	11 -
2.3. Water and Pollution	
2.4. Water treatment processes	16 -
Chapter (3): Experimental	47 -
PART I	
3.1.Raw material:	
3.2. Materials preparation:	48 -
3.3- Analyses:	
PART II	52 -
Chapter (4): Results and Discussion	
Part (I)	
4-1 Introduction:Error! Bookmark not de	
4.1.1.Characterization of corncobs:	
4.1. 2. Energy dispersive X-ray:	
4.1.3. Elemental analysis of corncobs:	
4.1.4.Tentative mechanism:	
4.1.5 Parameters affecting the production of (ACC):	66 -
4.1. 6. Thermogravimetric analysis (TGA):	70 -
4.1.7. Point of zero charge of (ACC):	
PART (II)	84 -
4-2.1.Chractrization of kaolin clay:	87 -

☐ List of Contents

4-2.2. Analysis of the untreated and thermally treated	
kaolin clay: 8'	7 -
4.2.3. Effect of different pH's on adsorbent	
performance:94	4 -
4.2.4 Evaluation of combination of ferric chloride as	
conventional coagulant and kaolin clay: 100	0 -
4.2.5. Characteristics of treated water: 103	3 -
Summary	7 -
REFERENCES 11	1 -
Arabic Summary	

Abstract

Using some chemically modified agriculture wastes and natural clays in the treatment of industrial wastewater

In this investigation, chemically modified corncobs were used as coagulant in wastewater treatment. This chemical modification was performed by allowing powdered corncobs to react with ethylene diamine tetra acetic acid (EDTA) and epichlorohydrin in alkaline medium. The factor affecting the nitrogen content in the produced amphoteric corncobs (ACC) e.g. reaction time, temperature and amount of (EDTA) added were studied. The product obtained (ACC) was characterized using spectrophotometer tools. analytical and elemental and thermogravimetric analysis besides FTIR and H¹NMR. The adsorption efficiency of (ACC) for metal ions in water as Cu⁺² and Zn⁺² was determined using atomic absorption spectrometry (AAS). It has been shown that there is a noticeable change in the specification of the treated water by the suggested (ACC) exemplified by least amount of organic matter, turbidity, solid substances and other elements existing in wastewater.

Also, the capability of kaolin clay (untreated and thermally treated) and combination with ferric chloride used as coagulants in wastewater treatment via adsorption, and coagulation-

flocculation processes was investigated. The optimum conditions (pH and coagulants dosage) were identified for the both kinds and in combinations of kaolin clay with ferric chloride. The results obtained revealed that kaolin clay is a good coagulant, which can absorb chemical oxygen demand (COD) biological oxygen demand (BOD), turbidity, total suspended solids (TSS) and some elements from wastewater with a good percentage removal. Using the optimum dosage of the combinations of thermally treated kaolin clay - ferric chloride mixture gave high efficiency removal of oil and grease, iron and turbidity. On the other hand, the effects of contact time indicated that the adsorption capacity of thermally treated kaolin clay was higher than the untreated one.

Keywords: Amphoteric corncobs, industrial wastewater, wastewater treatment; kaolin clay; ferric chloride; coagulation and flocculation.

List of Tables

Table No.	Title	Page No.

Table (1): the elemental analysis of native corncobs 64	-
Table (2): The effect of reaction conditions on the constituents of	
the produced (ACC) (C,H,N) 67	-
Table (3): Langmuir and Freundlich isotherm constants for	
adsorption of Cu(II) and Zn(II) ions on ACC 74	-
Table (4): comparison of corncobs derivative, ferric chloride and	
alum doses on the removal of organic matter, turbidity,	
hardness and colloidal silica of water 81	-
Table (5): Effect of combination dose of Alum and (ACC) on the	
removal of turbidity, total alkalinity, organic matter and	
colloidal silica 82	-
Table (6):Effect of combination dose of ferric chloride and (ACC)	
on the removal of turbidity, total alkalinity, organic	
matter and colloidal silica 83	-
Table (7): Percentage of metal ions in untreated kaolin clay 88	-
Table (8): Percentage of metal ions in treated kaolin clay 89	-
Table (9): Effect of kaolin clay dosage on turbidity, oil and grease	
and organic matter removal92	-
Table (10): Effect of pH on the turbidity, oil and grease and	
organic matter removal95	-
Table (11): Effect of Settling time on the turbidity, oil and grease	
and organic matter removal in water 99	-
Table (12):Effect of combination between ferric chloride and	
thermally treated kaolin clay at different dosages on the	
turbidity removal	-
Table (13): Effect of combination between ferric chloride and	
untreated kaolin clay at different dosage on the turbidity	
removal 102	-
Table (14): Variation of water characteristics at the optimum	
dosage of ferric chloride and different prepared	
flocculants concentration and their combination 104	-

List of Figures

Figure No.	Title	Page No.
Figure (1): The purpose of	coagulant addition	22 -
	nation by coagulant addition	
Figure (3): Chemical struc	tures of major polysaccharide bio-ba	ased flocculants 35 -
	tures of Cellulose, Hemicellulose an	
Figure (5): Dissolved end-	functionalized cellulose	38 -
	olic monomers in Lignin	
	process	
	ive X-ray (EDX) of native corncobs	
	ion time on nitrogen contents of (AC	
	ve corncobs and (ACC)	
	otherm plot of adsorption of Cu (II) a	
	otherm plot of adsorption of Cu (II)	
Figure (13): Determination	n of pHpzc of (ACC)	75 -
Figure (14): Effect of cont	act time on the removal % of Cu (II)	and Zn (II) by
, ,	on copper and zinc removal percent	
Figure (16): Effect of adso	orbent dose on Cu2+ and Zn2+ remo	val percent using
Figure (17): Effect of initia	al metal ions concentration (mg/l) or using (ACC)	n copper and zinc
	sis (EDX) of untreated kaolin clay	
	ated kaolin clay	
	sis (EDX) of thermally treated kaolir	
	nally treated kaolin clay	
	netric analysis of kaolin clay	
Figure (23): Effect of trea	ted and untreated kaolin clay dosage	e on turbidity 93 -
Figure (24): Effect of trea	ted and untreated kaolin clay dosage	e on oil &grease 94 -
Figure (25): Effect of treat	ed and untreated kaolin clay dosage	on organic matters 94 -
Figure (26): Effect ofpH of	on the turbidity	96 -
Figure (27): Effect of pH of	on the oil & grease	97 -
	on the organic matters	
	ling time on the turbidity	
Figure (30): Effect of Sett	lling time on the oil &grease	100 -
Figure (31): Effect of Settl	ling time on the oil &grease	100 -

Chapter (1):

INTRODUCTION & OBJECTIVES

Chapter (1): INTRODUCTION & OBJECTIVES

1.1. Introduction

Water is a simple, yet extremely important, molecule whose small size and biochemical properties allow it to bond easily with other molecules. In fact, water is involved in almost every biological reaction. Water has many chemical and physical properties that make it useful to cells and organisms. Water sticks to itself and to other things, which allows it to flow slowly and to fill small spaces. Water is the only material that can exist naturally as a solid, liquid, and gas at Earth's natural temperatures. It takes a lot of energy to change the temperature of water, so water maintains stable temperatures well. Water also transmits slight, allowing photosynthesis to occur underwater.

The constituent physical characterizations of water includes : taste , turbidity, temperature , colour & odour . On the other hand , chemical characterizations includes : fluorides, iron , manganese , lead , copper , sodium , nitrate , sulphate , biochemical oxygen demand , chemical oxygen demand , acidity and alkalinity (pH value) , phosphorus , total organic carbon, surfactants , and toxic metal and nonmetal ions .

Growing population, increased economic activity and industrialization has not only created an increased demand for