DEVELOPMENT AND ASSESSMENT OF SOME TRADITIONAL FOODS

By

MAGHFERA ABD ELMONEM ABD ELFATAH

B.Sc., Agric. (Food Technology), Fac. Agric., Ain Shams Univ., 2014

A thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

DEVELOPMENT AND ASSESSMENT OF SOME TRADITIONAL FOODS

By

MAGHFERA ABD ELMONEM ABD ELFATAH

B.Sc., Agric. (Food Technology), Fac. Agric., Ain Shams Univ., 2014

This	s thesis for M.Sc. d	legree has been a	ipproved by:
Dr.	Mostafa Abul-Fad	l Mohammed	
]	Prof. of Food Scien	nce and Technolo	ogy, Faculty of Agriculture,
	Al-Azhar University	у	
Dr.	Magda Habib Alla	ım	
]	Prof. Emeritus of I	Food Science and	Technology, Faculty of Agriculture
	Ain Shams University	ity	
Dr.	Mohamed Magdy	Mostafa Khallaf	f
]	Prof. Emeritus of I	Food Science and	Technology, Faculty of Agriculture
	Ain Shams University	ity	
Dr.	Mamdouh Helmi H	El-Kalyoubi	
]	Prof. Emeritus of I	Food Science and	Technology, Faculty of Agriculture
	Ain Shams University	ity	

Date of Examination: 14 / 12 / 2019

DEVELOPMENT AND ASSESSMENT OF SOME TRADITIONAL FOODS

By

MAGHFERA ABD ELMONEM ABD ELFATAH

B.Sc., Agric. (Food Technology), Fac. Agric., Ain Shams Univ., 2014

Under the supervision of:

Dr. Mamdouh Helmi El-Kalyoubi

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Magdy Mostafa Khallaf

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Ihab Salah Abd El-Hamid Ashoush

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Maghfera Abd El-monem Abd El-Fatah Ahmed: "Development and Assessment of Some Traditional Foods". Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2020.

There are many traditional foods In Egypt; kishk is one of the traditional food products in Upper Egypt. Also, noodles are easy of cooking, handling and low cost for consumers. Therefore, this work was carried out to produce modified kishk samples by using camel milk, soy milk and cheese whey with blending ratio, and samples were formed in chips kishk form. While, functional noodles were prepared by incorporation varying blends (0, 20, 40, 60 and 80%) of rice flour in replacement of wheat flour. Modified kishk samples were evaluated for their proximate composition, minerals content, scavenging activity, physical parameters, microbial analysis and sensory evaluation during storage period for three months. On the other hand, noodle samples were evaluated for cooking quality characteristics, scavenging activity and sensory properties.

The proximate composition for modified kishk samples, revealed that the moisture content of kishk prepared from camel milk was increased with increasing the replaced levels of camel milk. The ash content was the highest in samples contained camel milk at levels of 75 and 100%. While, the kishk prepared from cheese whey showed that its moisture content was higher as compared with control sample. Increasing the addition of whey cheese lead to increased the protein, ash and crude fiber contents. Also, the moisture content of kishk prepared from soy milk was higher compared with the control. While, the highest values were observed for samples prepared using 50 and 75% of soy milk as a replacer. On the other hand, proximate composition of kishk chips prepared from the best ratio of different sources and fortified with some species observed several changes in their chemical composition. Minerals

content in traditional and modified kishk samples were in the ranges of P (3.34:35.49), Mg (4.55:67.21), Ca (2.57:26.99), Fe (6.46:145.72) and Zn (2.17:31.17) ppm. The pH value and acidity (%) of kishk samples during storage period were significantly affected (p<0.05). The antioxidant activity for kishk samples at zero time ranged from 24.83 to 59.04%, and after 3 months from 13.30 to 43.15%. The overall acceptability showed that all kishk samples were accepted at zero time. While, after three months the samples that prepared from camel milk at ratios of 25% and 50% were the most preferable samples, followed by samples contained 25% and 50%, which cheese whey keep their sensory properties during storage. The results of bacterial count (TBC) in kishk samples were observed in safety range. No differences were observed between yeast and molds count in kishk samples at interval storage period.

proximate composition of uncooked noodles varied The significantly, with increasing rice flour level that replaced wheat flour, gradual decreases in moisture, ash, crude fiber and protein contents in noodle pastes were occurred, their values ranged between 4.02-5.33%; 1.11-5.22%, 0.65-0.82% and 8.51-12.81%, respectively. However, increases in fats, total carbohydrates and energy value were take place ranging between 4.62-8.91 %, 71.11-76.74% and 377.64 - 421.43 kcal/100g, respectively. The antioxidant activity ranged between 22.2% for wheat based noodle (100% wheat flour) and 36.8% for sample containing 80% rice flour as scavenging activity for free radicals. The overall acceptability of wheat-based noodles 100% WF received maximum scores for their sensory preferable attributes. While, in others blended flour noodles, the noodles incorporated with up to 40% rice flour received the same acceptability as wheat-based noodle. The cooking quality characteristics differed significantly in the noodle samples; the cooking time, ranged between 6.5 and 10.3 minutes, it was more in wheat-based noodles than noodles from rice flour. Cooking loss; water absorption percent; cooked weight and swelling index values ranged from 0.1 to 0.6%, 137.1 to 231.6%, 23.74 to 33.24 g/g and 3.20 to 5.38 %,

respectively; which revealed that a significant hindered was occurred in the functional paste properties and cooking quality parameters with increasing the level rice flour in noodles. The study indicated that, noodle made from mixtures of rice and wheat flour revealed that the best preferable cooking quality and sensory characteristics were observed at blending ratio 40 : 60% rice flour : wheat flour. These findings enhance the utilization of non-traditional flours like rice flour for noodles production with high nutritional value.

Keywords: Kishk, camel milk, soy milk, cheese whey, noodles, rice flour, wheat flour, proximate composition, mineral content, scavenging activity, physical parameters, microbial analysis, cooking quality, sensory evaluation

ACKNOWLEDGMENT

First and before all, full praise and gratitude is to ALLAH, who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties.

My sincere appreciation and deepest gratitude to Prof. Dr. Mamdouh Helmi El-kalyoubi Prof. Emeritus of Food Science and Technology, Department of Food Science Faculty of Agriculture, Ain Shams University, for his direct supervision, with him I learned a lot, at both professional and personal level. His wide knowledge and his logical way of thinking have been of great value for me. His understanding and encouraging have provided a good basis for the present work. I have no great words to express how much I am grateful to him! Thank you so much.

Deepest thanks and sincere appreciation to **Prof. Dr. Mohamed Magdy Mostafa** Prof. Emeritus of Food Science and Technology,
Department of Food Science, Faculty of Agriculture, Ain Shams
University for his supervision, precious advice given throughout the whole study. He was an important support throughout this work.

I also thank **Prof. Dr. Ihab Salah Abd El-Hamid Ashoush**, Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University for his kind supervision, long lasting beneficial instructions, continuous guidance and continuous encouragement during the course of this work.

Many thanks are extended to all members of Food Science and Technology Department, Faculty of Agriculture, Ain Shams University for their co-operation during this work. Finally, my deepest gratitude is offered to my Family.

Especially, I feel so honored and blessed to my parents, and want to express my gratitude for their care and support over the years. Thanks for instilling me with a strong passion for learning. I will never forget the important values you have passed down to me particularly perseverance and honesty.

There are no better words to use than thanks for both of them so much for believing in me. I owe my success for them. This achievement would not have been possible without them support both emotional and financial. At last I can't forget true best friends, thanks so much for all of them.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	VIII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1. Conventional foods	6
2.1.1. Biochemical changes during cereal fermentation	8
2.2. Modification of kishk product	11
2.3. Functional food ingredient	14
2.3.1. Cheese whey	16
2.3.2. Camel milk	19
2.3.3. Soy milk	20
2.4. Nutritional value of kishk	21
2.5. Modification of noodle products	26
2.5.1. Rice flour	26
2.5.2. Nutritional value of noval noodle products	29
3. MATRIALS AND METHODS	33
3.1. MATERIALS	33
3.1.1. Raw materials	33
3.1.2. Chemicals	33
3.1.3. Starter cultures	33
3.1.4. Culture media	34
3.1.4.1. Nutrient agar and brothe medium	34
3.1.4.2. Potato dextrose agar (PDA) medium	34
3.2. METHODS	35
3.2.1.Technological methods	35
3.2.1.1. Preparation of traditional kishk	35
3.2.1.2. Manufacture of modified kishk prepared from camel	
milk	35

	Page
3.2.1.3. Manufacture of modified kishk prepared from soy	
milk	36
3.2.1.4. Manufacture of modified kishk prepared from cheese	
whey protein	36
3.2.1.5. Preparation of kishk chips modified prepared by	
different sources	
3.2.1.6. Preparation for functional noodles analogous to	37
traditional vermicelli	42
3.2.2. Analytical Methods	43
3.2.2.1. Proximate analysis	43
3.2.2.2. Determination of energy values	43
3.2.2.3. Determination of physico-chemical characteristics	43
3.2.2.3.1. Determination of pH values.	43
3.2.2.3.2. Determination of titratable acidity (T.A)	44
3.2.2.3.3. Minerals content determination	44
3.2.3. Cooking quality of functional noodles	44
3.2.3.1. Optimal cooking time	44
3.2.3.2. Cooking loss	45
3.2.3.3. Swelling index	45
3.2.3.4. Water absorption	45
3.2.3.5. Cooked weight	45
3.2.4. Determination of scavenging activity for Kishk and	
functional noodles samples	46
3.2.5. Microbiological analysis	46
3.2.5.1. Homogenates preparation	46
3.2.5.2.Total plate counts (TPC)	47
3.2.5.3.Yeasts and molds count	47
3.2.6. Sensory evaluation	47
3.2.6.1. Sensory evaluation of traditional and modified cooked	
kishk samples	47
3.2.6.2. Sensory evaluation of functional noodles	48

	Page
3.2.7 Statistical analysis	48
4.1. Proximate composition of kishk prepared from different	49
sources	49
4.2.Mineral content of kishk prepared from different sources	57
4.3. Physico chemical characteristics of kishk prepared from	
different sources	60
4.4. Scavenging activity % of kishk prepared from different	
sources at interval storage period	63
4.5.Sensory evaluation of kishk prepared from different sources	
at zero time	65
4.6. Sensory evaluation of Egyptian kishk prepared from	
different sources after three months storage period	67
4.7. Microbiological analysis of different prepared kishk	
samples at interval storage period	69
4.8. Proximate composition of noodles	71
4.9. Cooking quality properties characteristics	72
4.10. Scavenging activity of noodles	74
4.11. Evaluation of sensory attributes for cooked noodles	75
SUMMARY AND CONCLUSION	77
REFERENCES	82
ARABIC SUMMARY	