SOLAR HEATING SYSTEM USING PARABOLIC COLLECTOR FOR THERMAL OPTIMUM CONDITIONS OF BIOGAS PRODUCTION IN WINTER

By

SARA MOHAMED GAMAL EI-DIN HASSAN

B. Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Farm Machinery and Power Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

SOLAR HEATING SYSTEM USING PARABOLIC COLLECTOR FOR THERMAL OPTIMUM CONDITIONS OF BIOGAS PRODUCTION IN WINTER

By

SARA MOHAMED GAMAL EI-DIN HASSAN

B. Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2013

This thesis for M.Sc. degree has been approved by:

Dr. Nahed Khairy Ismail Head researches of Biosystems Engineering, Agricultural Engineering Research Institute, Agricultural Research Center Dr. Mostafa Fahim Mohammed Abdel-Salam Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University Dr. Abdel-Ghani Mohamed El-Gindy Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University Dr. Mubarak Mohammed Mostafa Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture,

Date of Examination: / / 2019

Ain Shams University

SOLAR HEATING SYSTEM USING PARABOLIC COLLECTOR FOR THERMAL OPTIMUM CONDITIONS OF BIOGAS PRODUCTION IN WINTER

By

SARA MOHAMED GAMAL EI-DIN HASSAN

B. Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University 2013

Under the supervision of:

Dr. Mubarak Mohammed Mostafa

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Abdel-Ghani Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Dr. Ashrf Abdel-Galil Anwar

Lecturer of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

ABSTRACT

Sara Mohamed Gamal El-Din Hassan: Solar Heating System Using Parabolic Collector for Thermal Optimum Conditions of Biogas Production in Winter, Unpublished M.Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2019.

Due to the growing demand of energy, a lot of studies were directed to anaerobic digestion. Anaerobic digestion is influenced by several factors. Fermentation temperature is one of these factors. Both temperature range and temperature fluctuations affect greatly biogas production. It is difficult to attain the required optimum temperature in cold climates. Therefore, the digester needs to be supplied with external thermal energy to reach the desired temperature.

The aim of this study is to enhance the fermentation temperature inside the digester by supplying the required thermal energy to be within the optimum range (mesophilic range) for biogas production during winter "cold days" via solar energy technique.

The experiment was carried out at Solar Energy Laboratory, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University through December 2018 and January 2019. Two 50 L digesters were used in the experiment. One was insulated and connected to a parabolic trough (treatment), while the other operated at the ambient temperature (control). The temperature in the treatment digester was raised by pumping water, which was heated via solar radiation, into a simple heat exchanger that was installed inside the digester. The treatment digester is also equipped with a mechanical stirring shaft to maintain a hemogenic slurry and to guarantee the thermal distribution throughout the digester. A simple tracking circuit was used to navigate the parabolic trough collector automatically towards the sun throughout the day. The results show that the average temperature in the control digester through the experiment was 21.5 °C, while it was 27.08 °C in the treatment digester. This means that the parabolic trough collector enhanced the fermentation temperature in the

treatment digester by 20.6%. The accumulative biogas yields of the control digester and the treatment digester through the experiment were 9684.7 mL/kg. T.S. $(0.0304~\text{m}^3)$ and 24649.69 mL/kg. T.S. $(0.0774~\text{m}^3)$ respectively. By comparing both productivities, it was found that the productivity of the treatment digester was 2.5 times more than the productivity of the control digester.

Keywords: Anaerobic digestion, Biogas productivity, Fermentation temperature, Solar energy, Parabolic trough, Heat exchanger, Solar tracking, Control unit.

ACKNOWLEDGEMENT

First and foremost, thanks to Allah for everything.

My sincere thanks and gratitude are due to **Prof. Mubarak**Mohammed Mostafa (Prof. Emeritus of Agricultural Engineering,
Department of Agricultural Engineering, Faculty of Agriculture, Ain
Shams University) for his kindly supervision and valuable advice. His
continuous suggestions, discussions, support and guidance helped me
throughout this work. I could not have imagined having a better advisor
and mentor.

My deep gratitude and appreciation are due to **Prof. Abdel-Ghani El- Gindy** (Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University) for his exceptional support, encouragement, and his nonstop guidance. Also, his constructive criticism and his crucial comments assisted me a lot to improve my work.

Also, I would like to gratefully acknowledge **Dr. Ashrf Abdel-Galil Anwar** (Lecturer of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University) for his priceless suggestions, pivotal advice, insightful comments, and for granting his precious time to review the thesis.

Special thanks to Agricultural Engineering staff members, and lab mates for their support and help throughout the experiment.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	VIII
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	3
2-1- Egypt Energy Profile	3
2-2- Anaerobic Digestion Process	4
2-2-1- Hydrolysis	5
2-2-2- Acidogenesis	6
2-2-3- Acetogenesis	7
2-2-4- Methanogenesis	7
2-3- Factors Affecting Biogas Production	8
2-3-1- Fermentation temperature	8
2-3-2- pH	9
2-3-3- Carbon to Nitrogen ratio (C/N)	11
2-3-4- Mixing	11
2-3-5- Retention time	12
2-4- Anaerobic Digester Types	13
2-4-1- Floating-drum digesters (Indian system)	13
2-4-2- Fixed dome digesters (Chinese system)	14
2-4-3- Balloon Plants	15
2-5- Feeding Mode	16
2-6- Biogas Utilization	16
2-6-1- Electricity production with combined heat and power	17
production (CHP)	
2-6-2- Biogas injection into natural gas grids	17
2-6-3- Biogas for the production of heat and steam	17
2-6-4- Biogas conversion to bio-CNG	18
2-6-5- Fuel for vehicles	18
2-7- Heat Exchangers	18

	Page
2-8- Solar Collectors	19
2-8-1- Non-concentrating collectors (stationary)	20
2-8-1-1- Flat-Plate collector (FPC)	20
2-8-1-2- Compound parabolic collector (CPC)	22
2-8-1-3- Evacuated tube collector (ETC)	23
2-8-2- Concentrating solar collectors	25
2-8-2-1- Parabolic dish reflector (PDR)	27
2-8-2-2- Parabolic trough collector (PTC)	28
2-9- Sun Tracking System	28
2-10- Solar Thermal Applications	33
2-10-1- Water heating	33
2-10-2- Space cooling and refrigeration	34
2-11- Solar-Heated Biogas	34
III- MATERIALS AND METHODS	38
3-1- Experimental System	38
3-1-1- The digestion system	39
3-1-1-1 Digesters	39
3-1-1-2- Feedstock	39
3-1-1-3- Agitation and mixing	42
3-1-1-4- Heat exchanger	45
3-1-1-5- Thermal insulation	45
3-1-1-6- Gas collection and measurement system	45
3-1-1-7- Treatment digester heat balance	47
3-1-2- Parabolic trough collector (PTC)	49
3-1-2-1- Optical analysis of the PTC	50
3-1-2-2- Thermal analysis of the PTC	51
3-1-2-3- Solar radiation calculations	52
3-1-3- Pump and water tank	53
3-1-4- Sun tracking system	54
3-1-5- Control unit	56
3-2- Chemical Analysis	57

	Page
3-2-1- Total solids	57
3-2-2- Volatile solids	58
3-2-3- Organic total solids	58
3-2-4- Nitrogen	58
3-3- Measurement Instrumentation	59
3-3-1- Temperature instrumentation	59
3-3-2- Mass instrumentation	60
3-3-3- Electrical oven	60
3-3-4- Muffle oven	60
3-4- Fermentation Process	60
3-5- Cost Analysis	61
IV- RESULTS AND DISCUSSION	63
4-1- The Thermal Performance	63
4-2- Feedstock Specifications before Digestion	68
4-3- Daily Biogas Production Rate	68
4-4- Accumulated Productivity	69
4-4-1- Modeling cumulative biogas production	73
4-5- System Overall Thermal Efficiency	75
4-6- Calculating the Cost of Producing One Liter of Biogas from	75
the Treatment Digester	
4-7- Comparing the Calorific Value of the Daily Produced Biogas	75
and the Gasoline	
4-8- The Price of the Daily Produced Biogas	76
4-9- Calculating the Price of the Bio-fertilizers	77
V- SUMMARY AND CONCLUSION	78
VI- REFERENCES	82
VII- APPENDIX	95
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Egypt and other African countries primary	4
	energy consumption, by fuel, 2017	
2	Solar energy collectors	21
3	Electrical motor specifications	42
4	Characteristics of the parabolic trough	51
	concentrator	
5	Pump specifications	54
6	DC motor characteristics	55
7	Specifications of thermometer and	59
	thermocouples	
8	Overall establishment cost for the system, 2018	62
	by L.E	
9	Chemical analysis of cattle dung	68
A-1	Calculations of the solar radiation incident on a	95
	surface tilted with 30° angle	
A-2	Calculations of the solar radiation incident on a	96
	surface tilted with 45° angle	

LIST OF FIGURES

el, 2013 3
5
9
ster 14
er 14
15
oil tube 19
20
22
olic 22
ollector 23
24
ınd
with 25
ector 27
igh 28
ment 29
30
ector: 31
c) Polar
LDR 32
m 36
nents of 36
37

Figure No.		Page
23	The design of the solar system coupled with the	37
24	anaerobic digester	38
	Photograph of the experimental system	
25	Treatment digester dimensions	40
26	Photograph for the (a) treatment digester	41
27	(b) control digester	40
27	Feedstock used in the experiment (slurry)	42
28	Photograph of the electrical motor used in agitation	42
29	Photograph of the stirring shaft	43
30	(a) Timer circuit photograph (b) Circuit	44
	schematic (c) Arduino code for the timer circuit	
31	The simple heat exchanger installed inside the	45
	treatment digester	
32	Photograph of the gas collection and	46
	measurement system	
33	Parabolic trough collector dimensions	49
34	Photograph of the water tank	53
	(a) Photograph of the tracking circuit (b)	
35	Schematic of the electronic circuit of sun-	55
	tracking system	
36	Photograph of the two DC motors	56
37	Schematic diagram of the control circuit	56
38	Block diagram for the system process	57
39	Thermometer type K (DM6801A+)	59
40	Received solar radiation on surfaces tilted with	63
	different angles	
41	The water temperature variation in the absorber	64
42	Useful energy gained by the solar parabolic	65
	trough collector	
43-a	The day that has the lowest average fermentation	66

Figure No.		Page
	temperature in the digesters throughout the	
	experiment	
	The day that has the highest average fermentation	
43-b	temperature in the digesters throughout the	66
	experiment	
	Comparison of the average hourly temperatures	
44	between the control and treatment digesters	67
	throughout the experiment.	
	Relation between the biogas productivity of the	
45	control digester and the treatment digester and the	70
	fermentation temperature of both digesters	
46-a	The productivity of both digesters in terms of	71
	(mL/kg)	
46-b	The productivity of both digesters in terms of	72
	(mL/L)	
47	Quantities of accumulated biogas production for	73
	the control and treatment digester	
48-a	Modified Gompertz plot of biogas accumulation	74
	for control digester	
48-b	Modified Gompertz plot of biogas accumulation	74
	for treatment digester	
49	The system overall thermal efficiency	75

LIST OF ABBREVIATIONS

A Surface area Aa Aperture area AD Anaerobic digestion Ar Receiver area C Specific heat CRg Geometrical concentration ratio D Parabola width Dout Evacuated tube outer diameter dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal surk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
AD Anaerobic digestion Ar Receiver area C Specific heat CRg Geometrical concentration ratio D Parabola width Dout Evacuated tube outer diameter dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
Ar Receiver area C Specific heat CRg Geometrical concentration ratio D Parabola width Dout Evacuated tube outer diameter dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
C Specific heat CRg Geometrical concentration ratio D Parabola width Dout Evacuated tube outer diameter dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal su K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
CRg Geometrical concentration ratio D Parabola width Dout Evacuated tube outer diameter dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
D Parabola width Dout Evacuated tube outer diameter dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
Dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal su K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
dout Serpentine outer diameter ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
ET Evacuated tube f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
f Focal length Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid I_h Solar radiation incident on horizontal surface I_h Absorber length I_h Mass flow rate I_h Day number of year PTC Parabolic trough collector I_h Q Heat load	fer
Gb Incident solar beam radiation Heat transcoefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid Ih Solar radiation incident on horizontal suk K Heat conductivity coefficient I Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
coefficient h Parabola depth HRT Hydraulic retention time HTF Heat transfer fluid I_h Solar radiation incident on horizontal su K Heat conductivity coefficient l Absorber length \dot{m} Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	fer
h Parabola depthHRTHydraulic retention timeHTFHeat transfer fluid I_h Solar radiation incident on horizontal sureKHeat conductivity coefficient l Absorber length \dot{m} Mass flow ratenDay number of yearPTCParabolic trough collector Q Heat load	
HRT Hydraulic retention time HTF Heat transfer fluid I_h Solar radiation incident on horizontal su K Heat conductivity coefficient l Absorber length \dot{m} Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	
HTF Heat transfer fluid I_h Solar radiation incident on horizontal su K Heat conductivity coefficient l Absorber length \dot{m} Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	
I_h Solar radiation incident on horizontal surface K Heat conductivity coefficient I Absorber length I Mass flow rate I Day number of year I PTC Parabolic trough collector I Heat load	
K Heat conductivity coefficient l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load	
 l Absorber length m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load 	rface
 m Mass flow rate n Day number of year PTC Parabolic trough collector Q Heat load 	
n Day number of year PTC Parabolic trough collector Q Heat load	
PTC Parabolic trough collector Q Heat load	
Q Heat load	
· ·	
Q_L Rate of heat loss from digester	
Q_s Received solar energy	
\dot{Q}_u Useful energy gained in the working flu	id
Q_w Rate of heat transfer to manure	
ta Ambient temperature	
ts Solar time	
R Solar radiation	

α	Solar altitude angle
β	Tilt angle of solar collector
δ	Solar declination angle
Φ	Latitude angle
ω	Hour angle
η_0	Overall thermal efficiency