The Use of Crosslinks with Posterior Pedicular Screw Fixation in Lumbar Spondylolisthesis Thesis

Submitted for the Fulfillment of the MD degree in Neurosurgery

By Mohamed Mohie Eldeen Othman Mohasseb (M.B., B. Ch.) (M.Sc.)

Supervisors

Prof. Dr. Hossam El Huseiny

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed El-Narsh

Professor of Neurosurgery Faculty of Medicine, Minia University

Prof. Dr. Amr El-Shehaby

Professor of Neurosurgery
Faculty of Medicine, Ain Shams University

Prof. Dr. Sherif Hashim

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

ACKNOWLEDGEMENT

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who continues to bless and fill me with hope, faith and patience that enable me to carry out all my daily work.

I am greatly honored to express my thanks and gratitude to **Prof. Dr. Hossam El Huseiny,** Professor and former Head of Neurosurgery Department, Faculty of Medicine, Ain Shams University, for guidance, great help encouragement and his creative support throughout the whole work up of this thesis.

I am very much indebted to **Prof. Dr. Ahmed El-Narsh** Professor of Neurosurgery and former Head of Neurosurgery Department, Faculty of Medicine, Minia University, for his kind supervision, valuable advices, constructive criticism and indispensable help throughout this work

I would like to express thanks and gratitude to **Professor Dr. Amr El-Shehaby**, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his valuable help and advice for me to accomplish this work.

My deep gratitude and appreciation, great thanks to **Prof. Dr. Sherif Hashim,** Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his generous help and continuous support throughout this work.

Last but not least, I would like to thank my family for their great help and support and every person who helped me during this work especially my dear colleagues in Neurosurgery Department, Faculty of Medicine, Minia University, for their great help in this work.

ABSTRACT

Background: Pedicle screw instrumentation has gained wide popularity for

stabilization of spinal fusions. The use of pedicle screw fixation has increased fusion rates. The placement of segmental pedicle screws and cross-links in short segment posterior pedicle screw

constructs has been shown to increase the construct stiffness in some planes.

Aim of the Work: to evaluate addition of crosslinks to posterior pedicular screw

fixation as a modality for surgical management of lumbar spondylolisthesis.

Patients and Methods: This study included 50 patients with lumbar spondylolisthesis

divided into two groups according to the surgical approach used in treatment. One group with

Posterolateral fixation by transpedicular screws and rods and the other Group had cross-links

added to the posterior construct.

Results: There was no significant difference in postoperative JOA score between both

groups, while comparing mean of preoperative and postoperative JOA scores in each group showed a significant rise of the score in each group after surgery. There was no significant

difference in the variables of postoperative sagittal alignment between both groups, while

comparing mean of preoperative and postoperative sagittal alignment variables in each group revealed a significant reduction of the disc height percent in both groups, and in slip angle and

lumbar lordosis angle in group B. Regarding postoperative rate and degree of improvement in

the studied groups, there was no significant difference in the rate and degree of improvement

between both groups.

Conclusion: no appreciable benefit from using cross-links was found in short-segment

fixation of lumbar spondylolisthesis, where there's no or little torsional instability encountered

KEY WORDS: Lumbar spondylolisthesis, Cross-Links, Transverse rod connectors,

Posterolateral fusion, Transpedicular instrumentation.

iii

CONTENTS

	Page
Introduction	1
Aim of the work	3
Review of Literature	4
Anatomy of the lumbar spine	4
Biomechanics of lumbosacral spine	24
Functional anatomy	27
Pathophysiology of Lumbar Spondylosis	32
Stability and instability of lumbosacral spine	37
Pathology of Spondylolisthesis	47
Clinical Presentation	55
Diagnosis of lumbar spondylolisthesis	
Principles of treatment of spondylolisthesis	59
The Transverse Rod Connectors	64
Material and Methods	78
Results	80
Case Presentation Discussion	104
Summary & Conclusion	125
References	129
Arabic Summary	140
Thi able builliary	141

LIST OF FIGURES

Figure	Title	Page
No.		5
	The components of a lumbar vertebra	
2.	The epiphysial ring	5
3.	The annulus fibrosus	7
4.	The annulus is a laminated structure	7
5.	Hoop stress.	8
6.	A Schmorl's node	9
7.	The annulus acts like a coiled spring	10
8.	Diagram shows the experimental testing of vertical loading of the spine	11
9.	Dr. Nachemson's study that measured pressures in the L3-4 disc in varying positions	12
10.	The ligamentum flavum	13
11.	The anterior longitudinal ligament (arrow) on magnetic resonance imaging (MRI)	15
12.	The posterior longitudinal ligament	15
13.	The correct direction of the ligamentous fibers	16
16.	Arterial supply to the vertebrae	18
17.	Venous drainage of the vertebral column	22
18.	Formation and branching pattern of a typical spinal nerve	23
20.	Swelling pressure balance of a disc	28
21.	Disc nutrition	29
22.	The three stages of disc degeneration	30
23.	The phase of instability	31
24.	A well-stabilized L5-S1 disc with osteophytes	31
25.	On flexion-extension schematic drawn from a radiograph of an unstable segment	40
26.	A schematic of a degenerative spondylolisthesis	40
27.	A stair-step degenerative spondylolisthesis on flexion	49
28.	The iliolumbar ligaments	50
29.	A degenerative spondylolisthesis and retrospondylolisthesis	50
30.	Degenerative spondylolisthesis at lateral radiograph	50
31.	Diagram to show sheer through the lumbosacral disc	51
32.	Diagram to show that the L5 nerve root in degenerative spondylolisthesis	54

33.	Schematic drawing of a degenerative spondylolisthesis with deformation	55
	and stenosis of the spinal canal and the intervertebral	
34.	A- Lateral radiograph of a patient with L4-5 ischemic spondylolisthesis	61
	with an advanced slip	62
	B- Axial CT image at the level of DS slip	
	C- MRI showing facet degeneration	63 63
35.	D- Sagittal MRI showing L4-5 Spondylolisthesis	69
33.	The lateral plain film shows a degenerative spondylolisthesis with a narrowed disc space at the level of the slip: a fairly stable situation	
36.	The sagittal (T1) MRI shows a wide disc space (L4-L5) at the slip level: a	70
	relatively unstable situation	
37.	The transverse rod connector (crosslinks)	79
40.	Radiologic measurements	82
41.	Preoperative lateral extension radiograph	85
42.	pedicle screw trajectory and entry sites on the vertebra.	91
43.	Entry points to the lumbar pedicles	92
44.	External landmarks for identification of the first sacral pedicles.	93
45.	exposure of both sides of the spine	95
46.	Intraoperative and fluroscoy images	96
47.	Mean age in the studied groups	107
48.	Distribution of gender	108
49.	Mean body mass index	108
50.	Percentage of risk factors	109
51.	Percentage of clinical signs	110
52.	Mean duration of the disease	111
53.	Percentage of back signs	112
54.	Pre operative (JOA score)	113
55.	Percentage of the level of lesion	114
56.	Percentage of preoperative radiological findings	115
57.	Mean of preoperative sagittal alignment	116
58.	Percentage of the indications of surgery	117
59.	Percentage of postoperative complication	118
60.	length of hospital stay	119
61.	postoperative JOA score	120
62.	parameters of postoperative sagittal alignment	121

63.	postoperative improvement rate	123
64.	postoperative improvement degree	124
65.	Case no 32, Preoperative dynamic X-rays.	126
66.	Case no 32, Preoperative MRI	127
67.	Case no 32, Post operative X-ray A-P & Lateral view	128

LIST OF TABLES

Table No.	Title	Page
1.	Forward displacement	5 1
2.	Summary of the JOA system for low-back pain	99
3.	Demographic characteristics of the studied groups	107
4.	Risk factors in the studied groups	109
5.	Clinical presentation in the studied groups	110
6.	Duration of symptoms in the studied groups	111
7.	Back signs in the studied groups	112
8.	Preoperative (JOA) score	113
9.	Level of lesions in the studied groups	114
10.	Preoperative radiological findings	115
11.	Preoperative sagittal alignment	116
12.	Indications of surgery	117
13.	Postoperative complications	118
14.	Length of postoperative hospital stay	119
15.	Postoperative (JOA) score	120
16.	Comparing preoperative and postoperative JOA scores	120
17.	Postoperative sagittal alignment	121
18.	Comparing preoperative and postoperative sagittal alignment variables	122
19.	Postoperative rate and degree of improvement	123

LIST OF ABBREVIATIONS

% slip Degree of the slip

ALIF Anterior lumbar interbody fusion
ALL Anterior longitudinal ligament

AP Anteroposterior **BMI** Body mass index

BMP Bone morphogenic protein CT Computerized tomography

EZ Elastic zone

FSU Functional spinal unit

h Disc height

H Posterior wall height of the proximal vertebral body

h/H Disc height%Ht Body height

JOA Japanese orthopedic association

LL Lumbar lordosis

MRI Magnetic resonance image

MoMonthsNNumberNoNumber

NS Non SignificantNZ Neutral zoneP Probability Value

PLIF Posterior lumbar interbody fusion PLL Posterior longitudinal ligament

PZ Plastic zone

RCT Randomized control study

rhBMP-2 Recombinant human bone morphogenetic protein-2

S Slippage Slip angle

SCS Spinal canal stenosis

TENS Transcutaneous electrical nerve stimulation
TLIF Trans foraminal lumbar interbody fusion

Wt Body weight

Yr Years

Introduction

Since 1782, spondylolisthesis has been recognized as a disorder characterized by a visible lumbosacral deformity, slipped vertebrae, and fractures or other deformities of the pars interarticularis. Several classifications that vary in their descriptions of the deformed but intact pars interarticularis and facet joint anatomy have been proposed. Most classifications include six types of spondylolisthesis:

Type I: Congenital Type IV: Traumatic

Type II: Isthmic Type V: Pathological

Type III: Degenerative Type VI: Postsurgical

The isthmic type of spondylolisthesis is familiar to most neurosurgeons and has been studied extensively. A stress fracture of the pars interarticularis detaches the stabilizing posterior elements from the motion segment and results in biomechanically inappropriate translational and shear forces on the disc annulus. The annulus gradually fails as the vertebral bodies become displaced. Fibrocartilage proliferates at the fracture site, resulting in compression of the nerve exiting the foramen at that level. The forward slip of the upper vertebrae may be accompanied by an angular sagittal plane deformity, which creates a localized kyphosis. A compensatory hyperlordosis can occur above the spondylolisthesis with an associated retrolisthesis and symptomatic disc herniation.

Degenerative spondylolisthesis was first described by Junghans in 1931 as a specific form of listhesis with an intact neural arch. ⁽⁶⁾

Degenerative spondylolisthesis typically occurs at the level of L4-L5. It is then most likely at L3-L4, followed by L5-S1. Older people are most commonly affected; the average age at presentation being 60 years. It is four times more likely to occur in women than men, Parity has been associated with an increase incidence of spondylolisthesis. Imaging includes plain X-ray standing lateral, anteroposterior, oblique & flexion/extension views of the lumbar spine are helpful in demonstrating a slip, CT or MRI of lumbar spine. Clinically patients frequently complain of intermittent low back pain, symptoms of neurogenic claudication, occasionally radicular pain from compression by the degenerative facet. (58)

Treatment includes nonoperative care and operative intervention indicated for patients with progressive neurological deficit and those who fail to improve on proper nonoperative treatment, specifically, those people with persistent pain, either radicular or claudicatory, that interferes with professional and personal activity as well as quality of life. (120)

AIM OF THE WORK

- Review of literature and recent publication on common types of lumbar spondylolisthesis and its management.
- Evaluation of crosslinkage addition to traditional posterior pedicular screw fixation as a modality for surgical management of spondylolisthesis as regard indications and outcome.

ANATOMY OF LUMBAR SPINE

There are five lumbar vertebrae and the sacrum making up the lumbar spine. We can consider each vertebra as having three functional components: the vertebral bodies, designed to bear weight; the neural arches, designed to protect the neural elements; and the bony processes (spinous and transverse), designed as outriggers to increase the efficiency of muscle action.

The vertebral bodies are connected together by the intervertebral discs, and the neural arches are joined by the facet (zygapophyseal) joints (Fig. 1). The discal surface of an adult vertebral body demonstrates on its periphery a ring of cortical bone. This ring, the epiphysial ring, acts as a growth zone in the young and in the adult as an anchoring ring for the attachment of the fibers of the annulus. The hyaline cartilage plate lies within the confines of this ring (Fig. 2). The size of the vertebral body increases from L1 to L5, which is indicative of the increasing loads that each lower lumbar vertebral level has to absorb.

The neural arch is composed of two pedicles and two laminae (Fig. 1). The pedicles are anchored to the cephalad half of the vertebral body and form a protective cover for the cauda equina contents of the lumbar spinal canal. The ligamentum flavum (yellow ligament) fills in the interlaminar space at each level.

The outriggers for muscle attachment are the transverse processes and spinous process. (143)

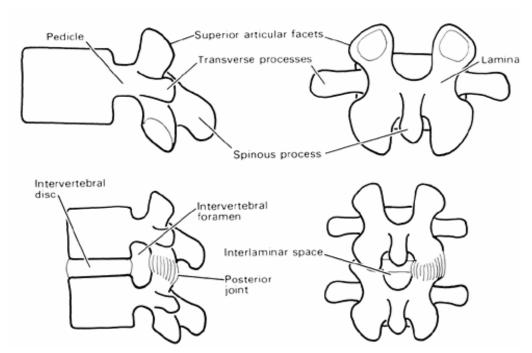


Figure 1: The components of a lumbar vertebra: the body, the pedicle, the superior and inferior facets, the transverse and spinous processes, and the intervertebral foramen and its relationship to the intervertebral disc and the posterior joint.

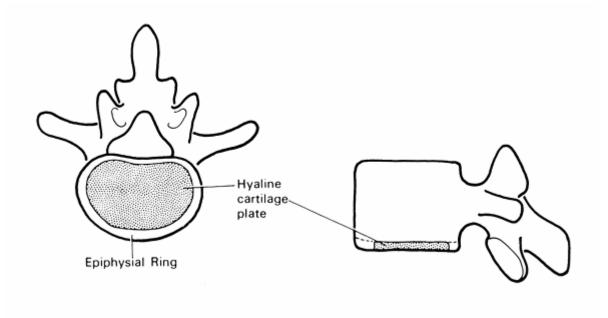


Figure 2: The epiphysial ring is wider anteriorly and surrounds the hyaline cartilaginous plate.

The Intervertebral Disc

The intervertebral discs (Fig. 3) are complicated structures, both anatomically and physiologically. Anatomically, they are constructed in a manner similar to that of a car tire, with a fibrous outer casing, the annulus, containing a gelatinous inner tube, the nucleus pulposus. The fibers of the annulus can be divided into three main groups: the outermost fibers attaching between the vertebral bodies and the undersurface of the epiphysial ring; the middle fibers passing from the epiphysial ring on one vertebral body to the epiphysial ring of the vertebral body below; and the innermost fibers passing from one cartilage endplate to the other. The anterior fibers are strengthened by the powerful anterior longitudinal ligament. The posterior longitudinal ligament affords only weak reinforcement, especially at L4-5 and L5-S 1, where it is a midline, narrow, unimportant structure attached to the annulus. The anterior and middle fibers of the annulus are most numerous anteriorly and laterally but are deficient posteriorly, where most of the fibers are attached to the cartilage plate (Fig. 3).

The fibers of the annulus are firmly attached to the vertebral bodies and arranged in lamellae, with the fibers of one layer running at an angle to those of the deeper layer (Fig. 4). This anatomic arrangement permits the annulus to limit vertebral movements. This important function is reinforced by the investing vertebral ligaments. (143)