

Effect of Tumor Suppressor Micro-RNA loaded on Nanozeolites in Hepatocellular Carcinoma induced mice

A Thesis

Submitted for the Degree of Master of Science as a

Partial Fulfillment for Requirements of the Master of Science

Biochemistry Department- Faculty of Science- Ain Shams University

By

Zeinab Salah Hussein

B.Sc. Chemistry & Biochemistry (2008)

Under supervision of

Prof. Dr. Eman M. Abd El Azeem Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Prof. Dr. Mahmoud M. ElHefnawi Professor of Bioinformatics Informatics and systems Department National Research Centre

Dr. Hanan Farouk A. Youssef

Associate Professor, Applied Mineralogy, Ceramic Department, Inorganic Chemistry and Natural Resources Division, National Research Centre

2020

سورة البقرة الأية: ٢١

Declarartion

This thesis has not been submitted for a degree at this or any other university, and represents my own work which has been done after registration for M. Sc. Degree at Biochemistry Department, Faculty of Science, Ain Shams University.

Zeinab Salah Hussein

First and foremost thanks to **ALLAH** for granting me the ability to accomplish this work, and for great and continuing help and mercy in all my life.

I would like to offer my sincerest gratitude to my supervisor **Prof. Dr. Eman M. Abd El Azeem**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her effective help and patience. She supported me throughout my thesis with her great experience, knowledge, and constructive comments.

I express my deep thanks to **Prof. Dr. Mahmoud M. ElHefnawi**, Professor of Bioinformatics, Biomedical Informatics and Chemo-Informatics Group leader, Informatics and systems Department, National Research Centre, for his guidance, great support, providing great working environment, and sharing of his expertise.

I also offer my profound gratitude and appreciation to **Dr. Hanan Farouk A. Youssef**, Associate Prof. of Applied Mineralogy, Ceramic Department, Inorganic Chemistry and Natural Resources Division, National Research Centre, for her encouragement, suggestion, and constructive supervision throughout this work.

Also, I would like to express my deep thanks and appreciation to **Prof. Dr. Dina M. Abo Almaaty**, Professor of Biochemistry, Faculty of Pharmacy, Suez Canal University; and **Prof. Dr. Eman El-Ahwany**, professor of Immunology, Immunology and Drug Evaluation Department, Theodor Bilharz Research Institute, for their appreciated time in reviewing this work and their valuable constructive comments.

In my daily work I have been blessed with a friendly and cheerful group of dear professors, and colleagues, in many ways I have learnt much from them. Many thanks are to all members of Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for medical research, National Research Center, for their cooperation and support.

Also, I would like to express my deepest love and appreciation to all my family especially to my beloved mother, father, brother, and sisters, for their deep prayers, love, and permanent encouragements throughout my life. I offer my thanks also to my husband's family for their support.

Special thanks to my beloved husband **Dr. Ahmed El-Kholy**, who support me, inspired me, and unconditionally love me. No words can convey how much I love and appreciate him.

Zeinab Salah

List of contents

Abstract	1
Introduction	3
Aim of the study	6
Review of literature	7-36
1. Hepatocellular carcinoma	7
1.1. Etiology of hepatocellular carcinoma	7
1.2. Risk factors of hepatocellular carcinoma	7
1.3. Stages of hepatocellular carcinoma	7
1.4. Surveillance and diagnosis of hepatocellular carcinoma	8
1.5. Treatment of hepatocellular carcinoma	9
2. Gene therapy	10
2.1. Liver as a target organ for gene therapy	10
2.2. Gene therapy strategies for HCC	11
2.3. Therapeutic nucleic acids	11
3. MicroRNA based gene therapy	11
3.1. MiRNA biogenesis and function	12
3.2. Mechanism of miRNA silencing gene expression	13
3.3. MicroRNAs and cancer	14
3.4. MiRNAs as oncogenes or tumor suppressor genes	14
4. MicroRNA replacement therapy	16
4.1. Tumor suppressor miRNAs associated with HCC	16
4.2. Oncogenic targets of tumor suppressor miRNAs in HCC	17
4.3. Tumor suppressor miR-34a	21
5. Strategies for miRNA delivery	23
5.1. Viral delivery systems	24
5.2. Non viral delivery systems	24
5.2.1. Physical techniques	25
5.2.2. Chemical approaches	25
6. Nanozeolites as a promising non viral vector	29
6.1. Structure of zeolites	29
6.2. Classification of zeolites	30
6.3. Properties and applications of zeolites	31
7. Zeolite socony mobil–5 (ZSM-5) as functional nanomaterial	33
7.1. Zeolite socony mobil–5 (ZSM-5) synthesis	35
7.2. Biomedical applications of zeolite socony mobil–5 (ZSM-	35
5)	
Materials and methods	37-72

1. Materials	37
2. Methods	38
2.1. Preparation and functionalization of ZSM-5 nanoparticle	39
(ZNP)	
2.2. Characterization of ZNP	40
2.2.1. X-ray diffraction study (XRD)	40
2.2.2. Transmission electron microscope (TEM)	40
2.2.3. Particle size and zeta potential analysis	41
2.3. Amplification of miR-34a expression constructs	42
2.4. Purification of miR-34a expression constructs	43
2.5. Preparation of miR-34a construct formulations	45
2.6. Gel retardation assay	47
2.7. Cell line and culture conditions	48
2.8. Transfection of HepG2 cells	49
2.9. Cytotoxicity studies	50
2.10. Green fluorescent protein (GFP) screening	51
2.11. Analysis of miR-34a and mRNA expression of its	52
predicted target genes in vitro	
2.11.1. Prediction of miR-43a targeted genes	52
2.11.2. RNA extraction and quantitative real-time PCR	52
(qRT-PCR)	
2.11.2.1. Total RNA extraction from HepG2 cells	52
2.11.2.2. DNase I treatment of total RNA	54
2.11.2.3. Complementary DNA (cDNA) synthesis	54
2.11.2.4. Quantitative real-time polymerase chain reaction	56
(qRT-PCR)	
2.12. Induction and treatment of hepatocellular carcinoma in	60
mice	
2.12.1. Animals	60
2.12.2. Experimental design	60
2.13. Blood and tissue sampling	61
2.14. Biochemical analysis	63
2.14.1. Determination of ALT and AST activity in blood	63
serum	
2.14.2. Quantitative determination of alpha fetoprotein	67
(AFP) concentration in liver tissue homogenate	
2.14.3. Estimation of CD44 and c-Myc by indirect ELISA	70
2.15. Histopathological and transmission electron microscopy	71
analyses	
2.16. Histochemical analyses of DNA content	71
2.17. <i>In vivo</i> analysis of miR-34a and target genes expression	72
2.18. Statistical analysis	72

Results	73-97
1. Characterization of ZNP	73
1.1. X-ray diffraction study (XRD)	73
1.2. Transmission electron microscope (TEM)	73
1.3. Particle size and zeta potential studies	73
2. Gel retardation assay	76
3. Cytotoxicity studies	76
4. Transfection efficiency	79
5. SOX9 and AEG-1 as candidate target genes of miR-34a in HCC	79
6. <i>In vivo</i> studies	84
6.1. Effect of miR-34a treatment on liver shape, and body weight	84
6.2. Effect of miR-34a treatment on liver function enzymes and	87
AFP	
6.3. Effect of miR-34a treatment on CD44 and c-Myc levels	87
6.4. Effect of miR-34a on histopathological investigation of liver	90
sections	
6.5. Ultrastructural results of liver sections	92
6.6. Histochemical analysis of DNA content	92
6.7. Gene expression of miR-34a AEG-1 and SOX-9 in vivo	96
Discussion	98-106
Summary & Conclusion	107-110
Summary	107
Conclusion	110
Recommendations	111
References	112-138
Arabic summary	

List of tables

Table 1: Particle size distribution (PSD), polydispersity index	75
(PDI) and zeta potential (z) results of the ZNP and prepared	
formulations.	
Table 2: Body weight gain % (BWG %) and relative liver weight	85
for mice at the end of experiment.	
Table 3: Biochemical results of all studied groups.	87
Table 4: DNA intensities in liver tissues from all experimental	93
group.	

List of figures

Figure 1: Schematic representation of miRNAs biosynthesis and	
mechanism of action.	
Figure 2: schematic representation of miRNA dual role in cancer.	14
Figure 3: Approaches for miRNA delivery.	22
Figure 4: Binding of building units (primary building units; PBU and	29
secondary building units; SBU).	
Figure 5: Applications of zeolites.	30
Figure 6: Schematic diagram showing the functionalization of ZSM-	33
5 surface with APTES and the protonation of the surface at low pH.	
Figure 7: A flow chart illustrating methods of the present study.	38
Figure 8: Schematic representation of pEGP-miR cloning and	42
expression vector.	
Figure 9: Schematic representation of the experimental schedule for	
the model induction and treatment.	
Figure 10: Standard curve of ALT.	66
Figure 11: Standard curve of AST.	66
Figure 12: Serial dilutions of standard. The last tube is regarded as a	68
blank. The results were used to blot the standard curve.	
Figure 13: Standard curve of AFP.	69
Figure 14: XRD Pattern for the prepared ZSM-5 zeolite.	74
Figure 15: Transmission electron microscopy (TEM) for the prepared	74
ZSM-5 zeolite nanoparticles.	
Figure 16: Gel retardation assay.	77
Figure 17: Cell viability of HepG2 cells assessed by MTT assay after	78
48 h of transfection.	
Figure 18: The fluorescence image of HepG2 cells after 48 h of	81
transfection.	

Figure 19: The expression of miR-34a in the transfected HepG2 cells	81
assayed by qRT-PCR and compared with the untreated cells.	
Figure 20: Predicted putative binding sequence between the miR-34a	82
and 3'-UTR of AEG-1 and SOX-9 as target genes.	
Figure 21: The mRNA expression of AEG-1 and SOX-9 assayed by	83
RT-qPCR in the HepG2 cells.	
Figure 22: Gross examination of livers removed from mice groups.	85
Figure 23: Effect of miR-34a treatment on body weight gain %	86
(BWG %) and relative liver weight % (RLW %) of mice.	
Figure 24: Liver function enzymes levels in all studied groups at the	88
end of experiment.	
Figure 25: AFP concentration in all studied groups at the end of	88
experiment.	
Figure 26: Effect of miR-34a treatment on CD44 and c-Myc proteins	89
levels (in milli-absorbance, mA).	
Figure 27: Histological analysis (H & E stain, Scale bar: 5 μm) of	91
liver tissues from all experimental group.	
Figure 28: Electron micrograph of liver tissues.	93
Figure 29: Histochemical examination of DNA in liver from all	95
experimental groups (Feulgen stain, Scale bar: 20 µm).	
Figure 30: Expression of miR-34a (qRT-PCR) in liver tissues of	97
mice from all experimental groups.	
Figure 31: mRNA expression of AEG-1 and SOX-9 (qRT-PCR) in	97
liver tissues of mice from all experimental groups.	

List of abbreviations

AAV	Adeno-associated virus
AEG-1	Astrocyte elevated gene-1
AFP	Alpha-fetoprotein
AGO	Argonaute protein
ALT	Alanine aminotransferase
APTES	Aminopropyltriethoxysilane
AST	Aspartate aminotransferase
AW	Absolute liver weight
BCLC	Barcelona clinic liver cancer
BWG	Body weight gain
CCL ₄	Carbon tetrachloride
CSCs	Cancer stem cells
CTHRC1	Collagen triple helix repeat containing 1
DCP	Des-gamma-carboxy prothrombin
DEN	Diethylnitrosamine
DLS	Dynamic light scattering
DMEM	Dulbecco's modified eagle essential medium
DOX	Doxorubicin hydrochloride
EMT	Epithelial mesenchymal transition
EZH2	Enhancer of zeste homolog 2
FBS	Fetal bovine serum
FBW	Final body weight
5-FU	5-Fluorouracil
GAPDH	Glyceraldehydes 3-phosphate dehydrogenase
GFP	Green fluorescent protein
GGT	Gamma-glutamyl transferase
GOLPH2	Golgi phosphoprotein 2

GPC3	Glypican-3
HCC	Hepatocellular carcinoma
HDAC1	Histone deacetylases class 1
HIV	Human immunodeficiency virus
IBW	Initial body weight
IFITM3	Interferon-induced transmembrane protein 3
IGF	Insulin-like growth factor
IGF2BP1	Insulin-like growth factor 2 mRNA-binding protein 1
IP	Intraperitoneal
IV	Intravenous
LAC-CSCs	Lung adenocarcinoma associated cancer stem cells
MFI	Mordenite framework inverted type
MiRNA	Microribonucleic acid (MicroRNA)
MSN	Mesoporous silica nanoparticles
MTT	(Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NAFLD	Non-alcoholic fatty liver disease
PAMAMs	Poly-amidoamine
PBS	Phosphate buffered saline
pDNA	Plasmid DNA
PEG	Polyethylene glycol
PEI	Polyethylenimine
PLGA	Poly lactide-co-glycolide
PNAs	Peptide nucleic acids
Pre-miRNA	Precursor miRNA
Pri-miRNA	Primary miRNA
qRT-PCR	Quantitative real-time PCR
RFA	Radiofrequency ablation
RISC	RNA-induced silencing complex

RLW	Relative liver weight
RNAi	Interfering RNA
ROX	6-Carboxy-X-rhodamine
RPS15A	Ribosomal protein s15a
SALL4	Sal-like protein 4
SDS	Sodium dodecyl sulfate
siRNA	Short interfering RNA
SMAD3	Mothers against decapentaplegic homolog 3
SOX-9	Sex determining region Y related high mobility group box 9
ST3GAL5	ST3 Beta-galactoside alpha-2,3-sialyltransferase 5
TACE	Trans-arterial chemoembolization
TAE	Tris-acetate EDTA
TEM	Transmission electron microscope
TEOS	Tetraethyl orthosilicate
ТРАОН	Tetrapropylammonium hydroxide
WHO	World health organization
XRD	X-ray diffraction
ZNP	ZSM-5 zeolite nanoparticles
ZSM-5	Zeolite socony mobil–5

Abstract

