

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computers and Systems Engineering Department

Localization and Positioning Techniques in WSNs

by

Nourhan Tarek Ahmed AbdEl Naiem

Bachelor of Science in Electrical Engineering
Computer Department
Faculty of Engineering, Cairo University, 2013

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

Computers and Systems Engineering Department

Supervised By

Prof. Dr. Hossam Mahmoud Ahmad Fahmy Dr. Anar Sayed Abdel Tawab Abdel Hady

Cairo, Egypt 2020

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computers and Systems Engineering Department

Examiners Committee

Name: Nourhan Tarek Ahmed AbdEl Naiem

Thesis: Localization and Positioning Techniques in WSNs

Degree: Master of Science

Signature

Prof. Dr. Salwa Hussein Abdel Fattah El-Ramly

Electronics & Communication Eng. Dept.

Faculty of engineering - Ain Shams University

Prof. Dr. Mahmoud Mohammed Fahmy Amin

Department of Computers & Control Engineering

Faculty of Engineering - Tanta University

Prof. Dr. Hossam Mahmoud Ahmad Fahmy

Computer Engineering & Systems Department

Faculty of Engineering - Ain Shams University

Researcher Data

Name: Nourhan Tarek Ahmed AbdEl Naiem

Date of birth: 01/05/1990

Place of birth: Giza, Egypt

Last academic degree: Bachelor of Science

Field of specialization: Computer Engineering

University issued the degree: Cairo University

Date of issued degree: 2013

Signature

Date: 18 / 01 / 2020

Abstract

Nourhan Tarek Ahmed AbdEl Naiem Localization and Positioning Techniques in WSNs Masters of Science dissertation Ain Shams University, 2020

This dissertation presents the problem of counting and tracking multiple targets, whose motions are independent. The counting problem is investigated by estimating the number of targets. Estimation is done by using the dynamic counting techniques, which exploit the temporal and spatial dependencies of the targets. Meanwhile, the target tracking problem is approached by estimating the targets trajectories, through the implementation of an enhanced probability hypothesis density-based filter. The proposed target tracking approach enhances the probability hypothesis density-based filter, to include the dynamic counting techniques. This enhancement introduces the implementation and simulation of the enhanced dynamic counting probability hypothesis density (DC-PHD) approach. This paper investigates the implementation of four of the existing target tracking and counting algorithms:

- 1) ClusterTrack filter, which is based on particle filtering techniques. It explores multiple targets tracking in a one-dimensional environment.
- 2) A distributed energy efficient (DEE) algorithm that tracks a single target in a two-dimensional environment.
- 3) Multicolor particle filter (MCPF) technique, which tracks multiple targets in a two-dimensional environment.
- 4) Probability hypothesis density filter, upon which this work is based. It shows the originally proposed multiple target tracking and counting in a two-dimensional environment.

The dissertation shows the simulations of the DC-PHD, by exploring different environmental settings. The accuracy of the proposed algorithm is derived mathematically, where the disc sensing model is used. Simulations compare the performance of the proposed algorithm with the previously mentioned target tracking

approaches. These comparisons show the efficiency of the proposed target counting and tracking technique, by using the disc sensing model of the sensor nodes.

Keywords: Dynamic counting, Multi-target counting and tracking, Particle filter, Probability hypothesis density-based filter (PHD), Wireless Binary Sensor Networks (WBSNs).

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The work included in this thesis was carried out by the author at Computers and Systems Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Nourhan Tarek Ahmed AbdEl Naiem

Signature

.....

Date: 18 / 01 / 2020

SUMMARY

This dissertation presents the implementation of some of the target tracking and counting techniques, while emphasizing the performance of the proposed algorithm. The dissertation is organized as follows:

Chapter One: It begins with an introduction about this dissertation and the contribution presented in this work.

Chapter Two: In this chapter, a survey of some of the most common localization techniques, as well as, a representation of the overall classification of the localization techniques.

Chapter Three: This chapter investigates the implementation of four of the commonly known target tracking and counting techniques, which are used as a measurement of the performance of the proposed algorithm.

Chapter Four: This chapter presents a detailed demonstration of the proposed algorithm.

Chapter Five: In this chapter, the simulation of the enhanced DC-PHD algorithm is presented, where different scenarios are introduced. As well as a comparison between simulations of the proposed algorithm and the tracking algorithms that were introduced in chapter three.

Chapter Six: Finally, the dissertation ends by extracting conclusions and stating future work that might be done based on this work.

Acknowledgment

All gratitude to ALLAH

I would like to thank Prof. Hossam Fahmy for giving me the chance to work under his supervision and for helping me in targeting this field. I learned so many valuable things from him, but above all, he taught me how to be devoted to research and how to help others.

Special thanks are due to Anar Abdel Hady for her fruitful discussions and patience with me and the full-time co-operation she showed along the past three years.

I would like also to thank all my professors and colleagues at the Computers and Systems Engineering Department. Thanks to all of you for your care and truthful help.

Special thanks to my family members for their support and patience. I would like to thank My father, who I consider the greatest father in the world. Thanks also my sister and brother for their support. I would like to present this thesis especially to my mother who supported and encouraged me to finish this thesis. She is the one who makes me this person who writes this thesis and reaches this successful step in my life.

Table of Contents

Table of Contents	IX
List of Figures	XII
List of Tables	XIV
Chapter 1: Introduction:	15
1.1. Research motivation	15
1.2. Research scope	17
1.3. Research contribution	17
Chapter 2: Literature Review and Related Work:	18
2.1.1. Node-self localization	18
2.1.1.1. Anchor based localization	20
2.1.1.2. Anchor free localization	20
2.1.1.3. Indoor localization	21
2.1.1.4. Mobile localization	24
2.1.2. Target/Source localization	25
2.1.2.1. Target localization in WSN	25
2.1.2.2. Target localization in WBSN	26
Chapter 3: Target Tracking Schemes:	30
3.1 Network model	30
3.1.1. Probabilistic sensing model	31
3.1.2. Disc sensing model	32
3.2. Target tracking algorithms	32
3.2.1. The ClusterTrack filtering technique	32
3.2.1.1. Algorithm basics	35
3.2.1.2. Simulations	37
3.2.2. Distributed energy efficient (DEE) algorithm	39

3.2.2.1. Algorithm basics	40
3.2.2.2. Simulations	42
3.2.3. The multicolor particle filter (MCPF) algorithm	45
3.2.3.1. Algorithm basics	48
3.2.3.2. Simulations	49
3.2.4. The probability hypothesis density-based filter (PHD)	53
3.2.4.1. Algorithm basics	54
3.2.4.2. Simulations	56
Chapter 4: The Enhanced DC-PHD Filtering Technique:	59
4.1 Preliminary background	60
4.1.1. Finite point process / random finite set statistics (FISST)	60
4.1.2. Unit disk graph	61
4.2. Model Description	62
4.3. Dynamic counting techniques	65
4.4. DC-PHD algorithm	66
4.4.1. Lower bound of the number of targets	67
4.4.2. Upper bound of the number of targets	68
4.4.3. PHD filter	71
Chapter 5 : Simulations and Results	73
5.1. Scenario 1	74
5.1.1. A single target	74
5.1.2. 5 targets	74
5.1.3. 10 targets	75
5.1.4. 15 targets	75
5.2. Scenario 2	77
5.2.1. 1, 5 and 10 targets	78
5.2.2. 15 targets	78

5.3.	Scenario 3	78
5.3.1.	1,5 and 10 targets	79
5.3.2.	15 targets	80
5.4.	Comparisons and discussions	81
5.4.1.	The DEE algorithm	81
5.4.2.	The ClusterTrack algorithm	82
5.4.3.	The MCPF algorithm	82
5.4.4.	The PHD algorithm	82
5.4.5.	The DC-PHD algorithm	82
5.5.	Conclusion	85
Chapter	6 : Conclusion and Future Work	88
6.1.	Conclusion	88
6.2.	Future work	88
Publicat	tions	89
Referen	ces	90

List of Figures

Figure 2.1. Localization classifications	9
Figure 3.1. The sensing models of the sensor nodes	1
Figure 3.2. ClusterTrack algorithm	5
Figure 3.3. Illustration of the motion model of the targets in a 1000 m AOI, by	
applying the ClusterTrack algorithm	8
Figure 3.4. The localization accuracy of the ClusterTrack algorithm based on 10	
execution runtimes. 3	8
Figure 3.5. The DEE algorithm4	0
Figure 3.6. Illustration of the motion model of the single target in a 800×800 AOI,	
by applying the DEE algorithm4	4
Figure 3.7. The localization accuracy of the DEE algorithm based on 10 execution	
runtimes of a single target4	5
Figure 3.8. The DEC and MCPF algorithms	8
Figure 3.9. Localization accuracy of the MCPF algorithm based on 10 execution	
runtimes5	1
Figure 3.10. Illustration of the motion model of the targets in a 100×100 AOI, by	
applying the MCPF algorithm52	2
Figure 3.11. The PHD filtering technique54	4
Figure 3.12. The localization accuracy of the PHD filtering algorithm based on 10	
execution runtimes5	7
Figure 3.13. Illustration of the motion model of the targets in a 1000×1000 AOI by	
applying the PHD filter5	8
Figure 4.1. The target movement through three sensors expressed in terms of arc	
location description for several snapshots [32]6	3
Figure 4.2. The proposed DC-PHD algorithm6	4
Figure 4.3. Dynamic counting techniques algorithm70	0
Figure 4.4. PHD filter algorithm72	2
Figure 5.1. Illustration of the motion model of the targets in a 1000×1000 AOI 70	6
Figure 5.2. Simulations of DC-PHD for 10 executions in a 100 m \times 100 m area of	
interest 7'	7

Figure 5.3. Simulations of DC-PHD for 10 executions in a 800 m \times 800 m area of	
interest	١
Figure 5.4. Simulations of DC-PHD for 10 executions in a 1000 m \times 1000 m area of	
interest80)

List of Tables

Table 3.1. Notation List of the ClusterTrack algorithm	34
Table 4.1. Notation List for the DC-PHD Algorithm	65
Table 5.1. Comparison between the proposed and the previously discussed tracking	g
algorithms	85

Chapter 1:

Introduction

1.1. Research motivation

A wireless sensor network (WSN) is composed of a large number of sensor nodes that can be placed inside the area under study. Recent advancements in technology have made it possible to build low cost sensor nodes that could be densely deployed in the region of interest either randomly or in a structured predefined manner. Although this flexibility in node deployment is considered as an advantage for the applications that are interested in studying crisis regions, it means that the network is required to be able to self-organize and determine the topology of its sensor nodes.

Location discovery of the sensor nodes has been one of the main keys in establishing a WSN. In many applications, the position information of the sensor nodes must be provided along with the sensed data, otherwise this data would be meaningless. When considering the monitoring of the volcano's activity application, it was observed that some of the sensing nodes report that the volcano is in a stable state, while others report the high activity of the volcano. This situation clearly shows the need to identify the location of these sensor nodes, so that the obtained data would become more sensible and meaningful.

Localization is known as the process of discovering the location of the sensor nodes, while positioning is the actual placement of the sensors within the environment. The basic idea in finding the location knowledge could be obtained by providing the sensor nodes with a GPS. These sensor nodes are commonly known as anchor nodes.

The simplest type of WSNs is the wireless binary sensor networks (WBSN), in which the deployed sensor nodes are binary. Binary sensors could detect the presence