

Ain Shams University Faculty of Science Chemistry Department

Development of Electrochemical Sensors Based on Electro-polymerized Materials for Determination of Some Clinically and Environmentally Relevant Species

A Thesis

Submitted to Chemistry Department – Faculty of Science – Ain Shams University for Requirements of the Degree of Doctor of Philosophy (Ph.D) of Science in Chemistry

Presented by

Ali Mostafa Abdel-Aziz Farag

M.Sc. in Analytical Chemistry, Faculty of Science Ain Shams University 2013

Supervised by

Prof. Dr. Ibrahim H. A. Badr

Professor of Analytical Chemistry, Faculty of Science Ain Shams University

Prof. Dr. Hamdy H. Hassan

Professor of Physical Chemistry, Faculty of Science Ain Shams University

Dr. Amr Ali Mohamed

Lecturer of Inorganic Chemistry, Faculty of Science Ain Shams University

Approval Sheet

Development of Electrochemical Sensors Based on Electro-polymerized Materials for Determination of Some Clinically and Environmentally Relevant Species

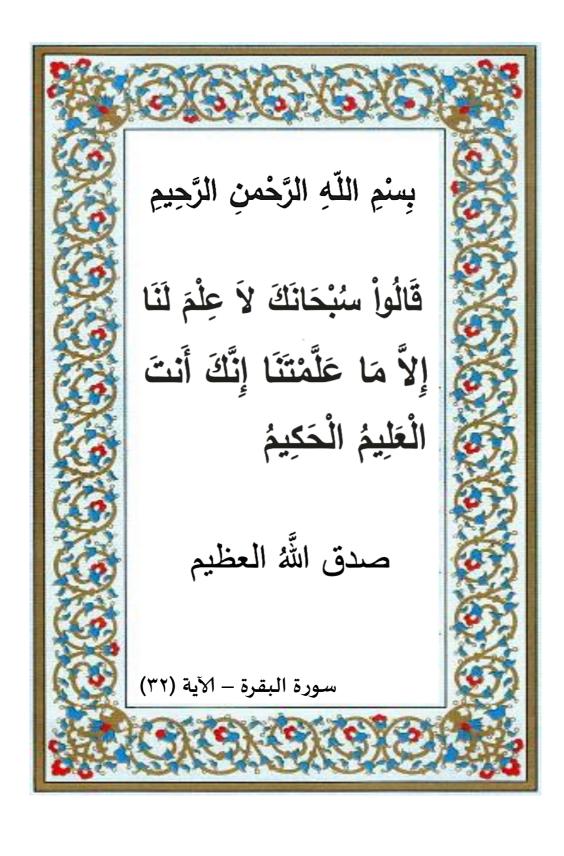
Thesis Advisors	Thesis Approval
Prof. Dr. Ibrahim H. A. Badr	
Prof. of Analytical Chemistry,	
Faculty of Science, Ain Shams University	
Prof. Dr. Hamdy H. Hassan	••••••
Prof. of Physical Chemistry,	
Faculty of Science, Ain Shams University	
Dr. Amr Ali Mohamed	•••••
Lecturer of Inorganic Chemistry,	
Faculty of Science, Ain Shams University	

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abd El-Shafi

Student Name: Ali Mostafa Abdel-Aziz Farag

Scientific Degree: M.Sc.


Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2008

Granting Year:

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abd El-Shafi

Dedication

I do appreciate my god for giving me great father and mother who are enlightening and always supporting me in all my life

I also thank my family for continuous encouragement and help

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and indebted to **Prof. Dr. Ibrahim H. A. Badr**, Prof. of Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, and **Prof. Dr. Hamdy H. Hassan**, Prof. of Physical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University. They were always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest, guidance and valuable criticism and their efforts made this humble work as possible. The door to **Dr. Ibrahim and Dr. Hamdy** office was always open whenever I ran into a trouble spot or had a question about my research or writing. They consistently allowed this project to be my own work but steered me in the right direction whenever they thought I needed it.

Also, I wish to express my sincere gratitude to **Dr. Amr Ali Mohamed**, Lecturer of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for his valuable advice and encouragement during this research work.

Abbreviations

Abbreviation	Full name
2-AP	2-Aminophenol
4-ABA	4-Aminobenzoic acid
4-NP	4-Nitrophenol
A	Surface area
AA	Ascorbic acid
AFM	Atomic force microscopy
AGCE	Activated glassy carbon electrode
c	Concentration
CA	Chronoamperometry
CAP	Chloramphenicol
CC	Catechol
CMEs	Chemically modified electrodes
CNTs	Carbon nanotubes
СР	Chronopotentiometry
CV	Cyclic voltammetry
CVD	Carbon vapor deposition
DA	Dopamine
DPV	Differential pulse voltammetry

$\mathbf{D}_{\mathbf{R}}$	Diffusion coefficient
EDX	Energy dispersive X-ray spectroscopy
$\mathbf{E}_{\mathbf{p}}$	Peak potential
E'°	Standard formal potential
FTIR	Fourier transform infrared spectroscopy
GC	Gas chromatography
GCE	Glassy carbon electrode
HPLC	High-performance liquid chromatography
HQ	Hydroquinone
$\mathbf{I}_{\mathbf{p}}$	Peak current
\mathbf{k}_{s}	Apparent heterogeneous rate constant
LOD	Lower limit of detection
LSV	Linear sweep voltammetry
MS	Mass spectrometry
MWCNTs	Multi-walled carbon nanotubes
n	Number of electrons transferred
NPV	Normal pulse voltammetry
p-ABSA	p-Aminobenzene sulfonic acid
PBS	Phosphate buffered solution
p-DAN	Poly(1,5-diaminonaphthalene)

PMEs	Polymer-modified electrodes
PNT	p-Nitrotoluene
R.S.D	Relative standard deviation
RC	Resorcinol
SAM	Self-assmbled-monolayers
SCE	Saturated calomel electrode
SEM	Scanning electron microscopy
SFGs	Surface functional groups
SPM	Scanning probe microscopy
STM	Scanning tunneling microscopy
SWCNTs	Single-walled carbon nanotubes
SWV	Square wave voltammetry
TEM	Transmission electron microscopy
UA	Uric acid
UGCE	Unactivated glassy carbon electrode
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction spectroscopy
α	Electron transfer coefficient
υ	Scan rate

List of Contents

Content	Page No.
Abbreviations	I-III
List of Contents	IV-IX
List of Figures	X-XVIII
List of Tables	XIX-XX
List of Schemes	XXI
Abstract	XXII-XXIII
Chapter 1	
Introduction	
1.1. Conductive Polymers: An overview	1
1.2. Carbon nanotubes and sensing	4
1.3. Polymer-CNTs composites as an effective and	10
reliable sensing platform	10
1.4. Glassy carbon and activated glassy carbon	14
electrodes	
1.5. Surface and spectroscopic techniques for	17
characterization of modified electrodes	10
1.5.1. Microscopy	18
1.5.1.1. Scanning electron microscopy (SEM)	19
1.5.1.2. Transmission electron microscopy (TEM)	19
1.5.1.3. Atomic force microscopy (AFM)	20
1.5.2. Spectroscopy	20 21
1.5.2.1. Energy dispersive X-ray spectroscopy (EDX) 1.5.2.2. X-ray photoelectron spectroscopy (XPS)	22
1.5.2.3. Fourier transform infrared spectroscopy (FTIR)	22
1.5.2.4. Raman spectroscopy	23
1.6. Electroanalytical techniques	24
1.7. Classification of electroanalytical techniques	25
1.7.1. Potentiometry	26
1.7.2. Conductometry	26
1.7.3. Coulometry	27
· · · · · · ·	

1.9.1. Instrumentation	36
1.9.2. Working electrode (WE)	38
1.9.3. Auxiliary Electrode	40
1.9.4. Chemically Modified Electrodes (CMEs)	40
1.9.5. Electrode modification techniques	41
1.9.5.1. Electrodeposition	42
1.9.5.2. Electropolymerization	43
1.9.5.3. Sol-gel method	44
1.9.5.4. Self-assmbled-monolayers (SAM)	47
1.9.6. Voltammetric techniques	47
1.9.6.1. Potential sweep techniques	47
1.9.6.1.1. Linear sweep voltammetry (LSV)	48
1.9.6.1.2. Cyclic voltammetry(CV)	49
1.9.6.2. Pulse voltammetry techniques	52
1.9.6.2.1. Normal pulse voltammetry (NPV)	53
1.9.6.2.2. Differential pulse voltammetry (DPV)	53
1.9.6.2.3. Square-wave voltammetry (SWV)	54
1.9.6.3. Step voltammetric techniques	56
1.9.6.3.1. Chronoamperometry (CA)	56
1.9.6.3.2. Chronopotentiometry (CP)	58
1.10. References	59-69
Chapter 2	
A sensitive and green method for determination	of catechol
using multi-walled carbon nanotubes/poly	(1,5-
diaminonaphthalene) composite film modified gla	assy carbon
electrode	
2.1. Introduction	71
2.2. Experimental	77
2.2.1. Reagents	77
2.2.2. Instruments	78
2.2.3. Preparation of MWCNTs/p-DAN/GCE	79

28

30

35

1.7.4. Voltammetry and Amperometry

1.9. Voltammetric sensors

1.8. Sensors

2.3. Results and discussion	81
2.3.1. Electropolymerization of 1,5-DAN at GCE Surface	81
2.3.2. Characterization of MWCNTs/(p-DAN)/GCE	85
2.3.3. Electrocatalyitc behavior of CC at MWCNTs/p-	02
DAN/GCE	93
2.3.4. Optimization of voltammetric response of	97
MWCNTs/p-DAN/GCE towards CC	91
2.3.4.1. Effect of accumulation time	97
2.3.4.2. Effect of Amount of MWCNTs	99
2.3.4.3. Effect of pH	101
2.3.4.4. Effect of scan rate	104
2.3.5. Analytical Performance of MWCNTs/p-DAN/GCE	111
based CC sensor	111
2.3.6. Repeatability and stability of the MWCNTs/p-	113
DAN/GCE based sensor	113
2.3.7. Interference studies	115
2.3.8. Real samples applications	120
2.3.9. Comparison of the proposed MWCNTs/p-	
DAN/GCE based sensor with different modified	121
electrodes for CC	
2.4. Conclusion	125
2.5. References	126-135
Chapter 3	
Glassy Carbon Electrode Electromodification	n in the
Presence of Organic Monomers: Electropolymen	rization vs.
Activation	
3.1. Introduction	137
3.2. Experimental	142
3.2.1. Reagents	142
3.2.2. Instruments	142
3.2.3. Preparation of the modified glassy carbon electrodes	144
3.3. Results and discussion	146
3.3.1. Electrochemical activation of GCE	146

3.3.2. Surface characterization of the studied GCEs	150
3.3.3. Electrochemical characterization of the developed	
GCEs	168
3.3.4. Comparison of the electroanalytical performance of	177
different electrodes towards DA	176
3.4. Conclusion	179
3.5. References	180-186
Chapter 4	
Activated glassy carbon electrode as an electro	chemical
platform for the determination of 4-nitrophe	nol and
dopamine in real samples	
4.1. Introduction	188
4.2. Experimental	195
4.2.1. Reagents	195
4.2.2. Instruments	195
4.3. Results and discussion	196
4.3.1. AGCE based electrochemical sensor for 4-NP	196
detection	190
4.3.1.1. Electrocatalyitc behavior of 4-NP at AGCE	196
4.3.1.2. Optimization of voltammetric response of AGCE	199
towards 4-NP	199
4.3.1.2.1. Effect of accumulation time	199
4.3.1.2.2. Effect of pH	201
4.3.1.2.3. Effect of scan rate	204
4.3.1.3. Analytical performance of AGCE based 4-NP	206
sensor	206
4.3.1.4 Repeatability and interference studies	208
4.3.1.5. Analytical applications of AGCE based 4-NP	214
sensor	214
4.3.1.6. Comparison of the proposed AGCE based sensor	214
with different modified electrodes for 4-NP	417
4.3.2. AGCE based electrochemical sensor for dopamine	216
detection	
4.3.2.1. Electrocatalyitc behavior of DA at AGCE	216

4.3.2.2. Optimization of voltammetric response of AGCE	
towards DA	218
4.3.2.2.1. Effect of accumulation time	218
4.3.2.2.2. Effect of pH	220
4.3.2.2.3. Effect of scan rate	223
4.3.2.3. Analytical performance of AGCE based DA	225
sensor	225
4.3.2.4 Repeatability and interference studies	227
4.3.2.5. Analytical applications of AGCE based DA sensor	228
4.3.2.6. Comparison of the proposed AGCE based sensor	231
with different modified electrodes for DA	
4.4. Conclusion	233
4.5. References	234-241
Chapter 5	
A sensitive voltammetric sensor for chlorampher	nicol based
on activated glassy carbon electrode and its applications in	
on activated glassy carbon electrode and its abbi	ivativiis iii
	ications in
real samples	243
real samples 5.1. Introduction	
real samples 5.1. Introduction 5.2. Experimental	243
real samples 5.1. Introduction	243 246
real samples 5.1. Introduction 5.2. Experimental 5.2.1. Reagents	243 246 246
real samples 5.1. Introduction 5.2. Experimental 5.2.1. Reagents 5.2.2. Instruments	243 246 246 247
real samples 5.1. Introduction 5.2. Experimental 5.2.1. Reagents 5.2.2. Instruments 5.3. Results and discussion	243 246 246 247 247 247
real samples 5.1. Introduction 5.2. Experimental 5.2.1. Reagents 5.2.2. Instruments 5.3. Results and discussion 5.3.1. Electrocatalyite behavior of CAP at AGCE	243 246 246 247 247
real samples5.1. Introduction5.2. Experimental5.2.1. Reagents5.2.2. Instruments5.3. Results and discussion5.3.1. Electrocatalyitc behavior of CAP at AGCE5.3.2. Optimization of voltammetric response of AGCE	243 246 246 247 247 247
Teal samples 5.1. Introduction 5.2. Experimental 5.2.1. Reagents 5.2.2. Instruments 5.3. Results and discussion 5.3.1. Electrocatalyite behavior of CAP at AGCE 5.3.2. Optimization of voltammetric response of AGCE towards CAP	243 246 246 247 247 247 250
real samples5.1. Introduction5.2. Experimental5.2.1. Reagents5.2.2. Instruments5.3. Results and discussion5.3.1. Electrocatalyitc behavior of CAP at AGCE5.3.2. Optimization of voltammetric response of AGCE towards CAP5.3.2.1. Effect of pH	243 246 246 247 247 247 250
real samples5.1. Introduction5.2. Experimental5.2.1. Reagents5.2.2. Instruments5.3. Results and discussion5.3.1. Electrocatalyitc behavior of CAP at AGCE5.3.2. Optimization of voltammetric response of AGCEtowards CAP5.3.2.1. Effect of pH5.3.2.2. Effect of accumulation time	243 246 246 247 247 247 250 250 253
5.1. Introduction 5.2. Experimental 5.2.1. Reagents 5.2.2. Instruments 5.3. Results and discussion 5.3.1. Electrocatalyitc behavior of CAP at AGCE 5.3.2. Optimization of voltammetric response of AGCE towards CAP 5.3.2.1. Effect of pH 5.3.2.2. Effect of accumulation time 5.3.2.3. Effect of scan rate	243 246 246 247 247 247 250 250 253 255
 real samples 5.1. Introduction 5.2. Experimental 5.2.1. Reagents 5.2.2. Instruments 5.3. Results and discussion 5.3.1. Electrocatalyitc behavior of CAP at AGCE 5.3.2. Optimization of voltammetric response of AGCE towards CAP 5.3.2.1. Effect of pH 5.3.2.2. Effect of accumulation time 5.3.2.3. Effect of scan rate 5.3.3. Analytical performance of AGCE based CAP sensor 	243 246 246 247 247 247 250 250 253 255 258
real samples5.1. Introduction5.2. Experimental5.2.1. Reagents5.2.2. Instruments5.3. Results and discussion5.3.1. Electrocatalyitc behavior of CAP at AGCE5.3.2. Optimization of voltammetric response of AGCEtowards CAP5.3.2.1. Effect of pH5.3.2.2. Effect of accumulation time5.3.2.3. Effect of scan rate5.3.3. Analytical performance of AGCE based CAP sensor5.3.4. Repeatability and stability of the AGCE	243 246 246 247 247 247 250 250 253 255 258 260

with different modified electrodes for CAP	
5.4. Conclusion	270
5.5. References	272-277
English summary	278-282