"3-D Forward Modeling and Inversion of Geo-magnetic Data Using Gauss Legendre Quadrature and Correlation Tomography Methods"

By

Hassan Badr Eldin Hassan Mohamed
(B. Sc. And M. Sc. In Geophysics)
(Lecturer Assistant in Geophysics Department, Nuclear Materials Authority)

A thesis submitted in partial fulfillment of the requirements for the degree

of

Doctor of philosophy

(Ph. D.)
In Geophysics
Under supervision of

Prof. Dr. Sami Hamed Abdelnaby

Professor of Geophysics, Head of Geophysics Department, Faculty of Science, Ain-Shams University

Prof. Dr. Ahmed Mohamed Sabry (passed away)

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain-Shams University

Prof. Dr. Baher Mamdouh Abdelsalam Geith

Professor of Geophysics, Vice President of Exploration Division, Nuclear Materials Authority

Prof. Dr. Hamdy Ismaeil Elsayed Hassanein (passed away)

Professor of Geophysics, Geophysics Department, Exploration Division, Nuclear Materials Authority

Geophysics Department

Faculty of Science

Ain-Shams University

2020

APPROVAL SHEET

TITLE

"3-D Forward Modeling and Inversion of Geo-magnetic Data Using Gauss Legendre Quadrature and Correlation Tomography Methods"

BY Hassan Badr El-dine Hassan Mohamed

The Thesis for Doctor of Philosophy Degree Has Been Approved

By

Prof. Dr. Sami Hamed Abdelnaby	Professor of Geophysics, Head of
	Geophysics Department, Faculty of
	Science, Ain-Shams University
Prof. Dr. Baher Mamdouh Abdelsalam Geith	Professor of Geophysics, Vice President
	of Exploration Division, Nuclear
	Materials Authority
Prof. Dr. Tharwat Ahmed Abdel-Fattah	Professor of Geophysics, Geophysics
	Department, Faculty of Science,
	Alexandria University
Prof. Dr. Salah Sherif Othman	Professor of Geophysics, National
	Research Institute of Astrophysics and
	Geophysics

ACKNOWLEDGEMENT

First and foremost, I give **Allah** the glory that made this work to complete. I would like to express the deepest appreciation to *Prof. Dr. Sami Abdel Nabi*, Prof. of geophysics, Ain-Shams University, who has the attitude and substance of a genius, he continually and convincingly conveyed a spirit of adventure in regard to research and also provides a constructive criticism and invaluable advice.

I'm deeply indebted and special thanks to *Prof. Dr. Baher Geith*, prof. of applied geophysics, exploration division, Nuclear Materials Authority, for his support, helpful discussions and being a great teacher, but no words of thanks and feelings are sufficient.

My sincere thanks to *Prof. Dr. Hamdy Ismaeil*, prof. of applied Geophysics, exploration division, Nuclear Materials Authority for his guidance. Without his guidance and persistent help this dissertation would not have been possible. The constructive comments, criticism from *Prof. Dr. Ahmed Sabry*, professor of geophysics, Ain-Shams University is greatly appreciated.

Also special thanks to **Assoc. Prof. Hakim Saibi**, geophysics department United Arab of Emirates University for his kind co-operation for the completion of my work.

Furthermore, I wish to thank my colleagues of Nuclear Materials Authority for supporting me throughout my research work.

Last but not least, I am forever indebted to My Parent, to My Wife, to My Children Talia and Ahmed and to My families, for their understanding and endless love, through the duration of my studies.

CONTENTS

	Page
ACKNOWLDEGMENT	i
CONTENTS	ii
LIST OF FIGURES	iv
LIST OF TABLES	x
ABSTRACT	xii
CHAPTER 1: INTRODUCTION	1
1.1) The Research challenge and the question addressed	3
1.2) Thesis Objectives.	3
1.3) Proposed program of work	4
CHAPTER 2: MAGNETIC METHOD	7
2.1) Introduction	7
2.1.1) The earth's magnetic field	7
2.1.2) Magnetic induction and important magnetic quantities	9
2.2) Applications of magnetic measurements	10
2.3) Rock magnetic properties	12
2.4) Current methods for magnetic interpretation	16
2.4.1) Depth Estimation	18
2.4.2) Forward Modeling	20
2.4.3) Parametric Inversion	22
2.4.4) Physical Property Inversion	23
CHAPTER 3: FORWARD CALCULATIONS PRINCIPLE	24
3.1) Introduction to Forward Modeling	24
3.2) Maxwell's Equations for source-free magnetostatics	24
3.3) Magnetic anomaly of a point dipole	26
3.4) Magnetic anomaly of an extended body	29
3.5) Magnetic anomaly for the hexahedral prism	30
3.6) Synthetic Examples	39

CHAPTER 4: TESTING THE FORWARD MODELLING	57
4.1) Introduction	57
4.2) Field Examples	57
4.2.1) Aynak Logar Valley (ALV)	57
4.2.2) Zeit Basin Field Data	62
4.2.3) Green Al-Mubazzarah	71
CHAPTER 5: INVERSION METHOD	79
5.1) Introduction	79
5.2) Theory of correlation imaging of magnetic data	80
5.2.1) Synthetic Example	84
5.2.2) Test inversion code with Um Salatit field data	99
5.2.2.1) Introduction	99
5.2.2.2) Geology	101
5.2.2.3) Aeromagnetic data	104
5.3) Model objective function	109
5.3.1) Data misfit	111
5.3.2) Obtaining a solution	112
5.3.3) Um Salatit field data	112
5.3.3.1) Tilt Angle method (TA)	121
5.3.4) Zeit basin field data	123
SUMMARY AND CONCLUSIONS	131
REFERENCES	137
APPENDCIES	150
APPENDEX I	150
APPENDEX II	158
ARABIC SUMMARY	

LIST OF FIGURES

Figure No.		Page
(2-1)	The orientation of the main magnetic field can be described using	
	inclination (I) and declination (D)	9
(2-2)	A schematic representation of magnetic induction of a magnetic body	
	showing the primary inducing field, H ₀ , the induced magnetization, M, and	
	the associated secondary field, H _s	10
(2-3)	Typical magnetic susceptibilities for some common minerals and rock	
	types	15
(2-4)	Three categories of techniques to interpret potential field data	17
(3-1)	The normal component of all currents I_t passing through a surface S is	
	proportional to B • dl integrated around the loop that bounds S	25
(3-2)	Current loop observed at point P. Vector \mathbf{m} has direction $\hat{\mathbf{n}}$ and magnitude	
	equal to the current I times the area of the loop	26
(3-3)	Magnetized body full of Magnetic dipoles	28
(3-4)	The 8-node hexahedron and the natural coordinates ξ , η , ζ	31
(3-5)	Coordinates transformation from general hexahedral element (A) to a local	
	standard element (B)	32
(3-6)	3-D hexahedral prism with dimension 4 km in x, y and z directions 10 A/m	
	magnetization intensity	37
(3-7)	Magnetic vector components Bx, By, Bz and total magnetic field anomaly	
	(B _t) for the hexahedral prism, the inducing field has θ_I = 49° and θ_D = -4.9°.	
		38
(3-8A)	Synthetic 3-D model involves a buried magnetic block	41
(3-8B)	Total magnetic field anomaly produced by the buried block, inclination I=90° and D=0°, using the GLQ method	41
(3-9A)	Synthetic 3-D model involves a buried magnetic block	42
(3-9B)	Total magnetic field anomaly produced by the buried block, inclination	
	I=90° and D=0° using the FVD method	42
(3-10)	Magnetic anomaly profile runs from west to east calculated from the GLQ	
	and FVD methods	43

(3-11A)	Synthetic 3-D model involves a buried magnetic block subdivided into four	
	regions	44
(3-11B)	Total magnetic field anomaly produced by the buried block, inclination	
	I=90° and D=0°, using the GLQ method	44
(3-12)	Magnetic anomaly profile runs from west to east calculated from the GLQ and FVD methods	45
(3-13)	Two sections of the model consisting of two prisms buried in a non-	
	susceptibility background	46
(3-14)	3-D perspective view of two prisms buried at two different depths	46
(3-15)	Total magnetic field anomaly on the surface, inclination I=65° and D=25°	
,	using the GLQ method	47
(3-16)	Calculated total magnetic field anomaly proposed by UBC-GIF (2005)	48
(3-17)	Geological models for common magnetic anomaly sources	49
(3-18)	3-D perspective view of the synthetic graben model	50
(3-19)	Total magnetic field anomaly produced by the graben model, Inclination	
, ,	I=90° and D=0°, using the GLQ method	50
(3-20)	Application to synthetic example. (A) Slice through a 3-D magnetic	
	susceptibility model composed of normal fault with a magnetization	
	intensity of 5 A/m in a non-susceptible half-space. (B) Horizontal location	
	of the normal fault model. (C) 3-D perspective view for the normal fault	
	model (D) The total magnetic anomaly produced by the normal fault model	53
(3-21)	Application to synthetic example. (A) Horizontal location of the oblique	
	fault model. (B) 3-D perspective view for the oblique fault model	54
(3-22)	The total magnetic anomaly produced by the oblique fault model using	
	GLQ method, the inducing field has direction $I = 90^{\circ}$ and $D = 0^{\circ}$	55
(3-23)	Application to synthetic example. (A-B) Slices through a 3-D magnetic	
	susceptibility model composed of a dipping slab in a non-susceptible half-	
	space. The slab is buried at a depth of 50 m and extends to 400 m depth at	
	a dip angle of 45°. (C) 3-D perspective view for the slab model (D) The	
	total magnetic anomaly produced by the slab model, the inducing field has	
	direction $I = 75^{\circ}$ and $D = 25^{\circ}$. (E) 3-D perspective view for the smoothed	
	slab model. (F) The total magnetic anomaly produced by the smoothed slab	
	model	56

(4-1)	Flow chart illustrating the strategy for trial and error forward modelling	
	used for calculating magnetic anomaly, Parameters (p1, p2, p3,) are	
	attributes of the source, such as depth, thickness, or magnetization.	59
(4.2)	Adapted from Blakely (1995)	39
(4-2)	Field example shows the reduced-to-pole (RTP) aeromagnetic data from	6 0
(4.2)	Aynak Logar Valley, Afghanistan	60
(4-3)	Shows the calculated RTP magnetic using GLQ method	60
(4-4)	3-D simplified model constructed to represent measured aeromagnetic	~1
(4.5)	data	61
(4-5)	Magnetic anomaly profile across the main magnetic anomaly (1) runs from	(2
(4.6)	point A to point B	62
(4-6)	Location and geologic map of the Zeit basin area, including the	<i>-</i> 1
(4.5)	aeromagnetic survey area.	64
(4-7)	Generalized structural cross section in the central Gulf of Suez, showing	
	that the Zeit basin contains the thickest Miocene sediments and evaporites	
(4.0)	in the Gulf of Suez (United States Geological Survey (USGS), 1998)	66
(4-8)	RTP magnetic anomaly map of the Zeit basin area showing the drill-hole	
(4.0)	locations and profile A-B runs across the study area	67
(4-9)	3-D perspective view of the synthetic simplified graben model constructed	
(4.40)	to represent the aeromagnetic field data	69
(4-10)	Calculated magnetic anomaly field, Inclination I=90° and D=0°, using the	
	GLQ method.	70
(4-11)	Profile AB a cross the study area (Zeit basin) to compare between RTP and	
	calculated magnetic field data from GLQ method	70
(4-12)	Geologic map of the study area, and Satellite Image showing locations of	
	the points of magnetic measurements	73
(4-13)	Surface geologic map of the study area	73
(4-14)	Total magnetic intensity map of Al-Mubazzarah area	74
(4-15)	Measured RTP magnetic anomaly map of Al-Mubazzarah area	75
(4-16)	Calculated magnetic anomaly field from the 3-D synthetic model for Al-	
	Mubazzarah area, inclination I=90° and D=0°, using the GLQ method	76
(4-17)	Horizontal location for the 3-D simplified model constructed to represent	
	measured magnetic field data	77

(4-18)	3-D perspective view for the simplified Al-Mubazzaran model illustrates
	the depth to the magnetized sources which ranges between 10 up to 50
	meters
(5-1)	Three dimensional magnetized body approximated by the effect of a point
	dipole located at its centre
(5-2)	The mesh used to discretize the study area
(5-3)	Three dimensional visualization of the synthetic model approximated at
	dipole point (5000, 5000 and 500)
(5-4)	The synthetic magnetic total field anomaly calculated along profile AB
(5-5A)	Correlation coefficient values for different depth intervals
(5-5B)	The imaged source distributions a long profile AB over the magnetized
	prism
(5-5C)	Results using cutoff value at 0.6
(5-5D)	Three dimensional visualization of the inversion results
(5-6A)	Three dimensional visualization of the synthetic model approximated at
	dipole point (500, 0 and 100)
(5-6B)	Correlation coefficient values for different depth intervals
(5-6C)	The imaged source distributions of the synthetic model approximated at
	dipole point (500, 0 and 100)
(5-6D)	Results using cutoff value at 0.6
(5-7A)	Three dimensional visualization of the synthetic model approximated at
	dipole point (0, 0 and 100)
(5-7B)	Correlation coefficient values for different depth intervals
(5-7C)	The imaged source distributions of the synthetic model approximated at
	dipole point (0, 0 and 100)
(5-7D)	Results using cutoff value at 0.6
(5-8A)	Three dimensional visualization of two synthetic models approximated at
	dipole points (0, 0, 100) and (500, 0 and 100)
(5-8B)	The correlating imaging along x- axis which is roughly corresponding to
	the real location of the two prisms
(5-8C)	The imaged source distributions of the two synthetic models
	approximated at dipole points (0, 0 and 100) and (500, 0 and 100)
(5-8D)	Inversion results using cutoff value at 0.6

(5-9)	Total magnetic field anomaly produced by the buried block, inclination	
	I=90° and D=0°, using the GLQ method	97
(5-10)	The correlating imaging along the profile (A-B)	97
(5-11A)	The equivalent magnetic dipole distribution from the correlation imaging	
	of the magnetic total field anomaly along profile (A-B)	98
(5-11B)	Inversion results using cutoff value at 0.6	98
(5-12)	General location map of the study area. A) The location of the Um Salatit	
	gold occurrence, Central Eastern Desert, Egypt. B) Elevation map of the	
	study area	103
(5-13)	Geologic map of the Um Salatit gold occurrence area, Central Eastern	
	Desert, Egypt (EGS 1978)	103
(5-14)	Sun-shaded colour image of Aeromagnetic-intensity map, reduced to the	
	pole, Um Salatit gold occurrence area, Central Eastern Desert,	
	Egypt	105
(5-15)	Figure 5.23. The equivalent magnetic dipole distribution from the 3D	
	correlation imaging of the RTP magnetic field anomaly along profiles	
	$A-A'(A), B-B'(B), C-C'(C), \dots$	107
(5-16)	The equivalent magnetic dipole distribution from the 3D correlation	10
(/	imaging of the RTP magnetic field anomaly along profiles D–D', E–E' and	
	F-F'	108
(5-17)	Digital elevation model (DEM) for the Um Salatit gold occurrence	110
(5-18)	Magnetic susceptibility model for the Um Salatit gold occurrence and	
	hosted rocks. X and Y axes are in UTM (m). Z axis (elevation above sea	
	level) in m	115
(5-19)	East-west cross sections through the susceptibility model. Slices are	
	arranged from East (left) to west (right). a) X = Eastern 906000m, b)	
	X=Eastern 907500m, c) X=Eastern 909500m, d) X=Eastern 912000m	11'
(5-20)	South-North cross sections through the susceptibility model. Slices are	
	arranged from North to South. a) Y = Northern 274500m, b) Y= Northern	
	276000m, c) Y= Northern 277500m, d) Y= Northern 278500 m	11'

(5-21)	Horizontal slices at increasing depths through the susceptibility model.	
	Slices are arranged from (0.5 km to 2 km). a) Z =500m, b) Z=1000m, c)	
	Z=1500m, d) Z=2000m	118
(5-22)	3-D Susceptibility model for the Um Salatit gold occurrence, overlaid by	
	the measured, calculated magnetic field anomaly and the misfit	119
(5-23)	(A) Measured magnetic data, (B) Calculated magnetic data, (C) Misfit	
	between measured and calculated magnetic data	120
(5-24)	Tilt Angle of the RTP data	121
(5-25)	The susceptibility model of 0.06 cut off overlaid by RTP observed	
	magnetic anomaly	122
(5-26)	RTP magnetic anomaly map of the Zeit basin area showing the drill-hole	
	locations and profile A-B runs across the study area	125
(5-27)	Digital elevation model (DEM) grid for the Zeit basin, Gulf of Suez,	
	Egypt	126
(5-28)	The mesh used to discretize the study area (Zeit basin), the mesh has 63-	
	by-30-by-15 cells (easting-northing-depth) and added zones outside the	
	region of interest (red rectangle) illustrates the padding cells	126
(5-29)	(A) 3-D Susceptibility model for the Zeit basin overlaid by the measured	
	and calculated magnetic field data. (B) 3-D Magnetic susceptibility with	
	cut-off 0.005 iso-surface model overlaid by the measured and calculated	
	magnetic field data	127
(5-30)	(A) Measured magnetic data, (B) Calculated magnetic data, (C) Misfit	
	between measured and calculated magnetic data	129
(5-31)	Magnetic anomaly profile (A-B) across the Zeit basin (Figures 5.26) to	
	compare between RTP and calculated magnetic field data from 3-D	
	inversion (red) and GLQ 3-D forward modeling (blue)	130

LIST OF TABLES

Table No.		Page
(2-1)	Magnetic susceptibility values for common mineral and rock types.	
	Taken from Sharma (1997, pg. 74)	15
(3-1)	Five sample points (Abscissas) and weights	37
(5-1)	Discretization parameters of the base and padding volume	113
(5-2)	Magnetic susceptibilities of rocks and minerals compiled by (Clark and	
	Emerson1991; Hunt et al.1995)	114
(5-3)	List of drill-holes, depths and penetrations in the study area	124
(5-4)	Discretization parameters of the active volume	125
(5-5)	Discretization parameters of the base and padding volume	125