Detection of Spectral Signature of Mangrove Forests along Red Sea Using Hyperspectral Data and Evaluation of Antimicrobial Activity of Mangrove Endophytic Fungi

Thesis

Submitted for the partial fulfillment of the Degree of M.Sc. in Microbiology

By

Manar Ahmed Mohamed Basheer

B.Sc. Microbiology / Chemistry (** 17)

DEPARTMENT OF MICROBIOLOGY FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

Detection of Spectral Signature of Mangrove Forests along Red Sea Using Hyperspectral Data and Evaluation of Antimicrobial Activity of Mangrove Endophytic Fungi

Thesis
Submitted for the partial fulfillment of the Degree of M.Sc. in Microbiology

By Manar Ahmed Mohamed Basheer

B.Sc. Microbiology / Chemistry (* .) *)

Supervised By

Prof. Dr. Mohamed A. Abouzeid

Professor of Microbiology
Department of Microbiology
Faculty of Science
Ain-Shams University

Prof. Dr. Amal A. Mekawey

Professor in mycology
The Regional Center of Mycology and Biotechnology
Al-Azhar University

Assoc. Prof. Dr. Sameh B. El-Kafrawy

Head of Marine Sciences department National Authority for Remote Sensing and Space Sciences (NARSS)

> DEPARTMENT OF MICROBIOLOGY FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

Approval sheet

Detection of Spectral Signature of Mangrove Forests along Red Sea Using Hyperspectral Data and Evaluation of Antimicrobial Activity of Mangrove Endophytic Fungi

By Manar Ahmed Mohamed Basheer

B.Sc. Microbiology / Chemistry (**)*

Supervisors

Approved

Prof. Dr. Mohamed A. Abouzeid

Professor of Microbiology, Department of Microbiology Faculty of Science, Ain-Shams University

Prof. Dr. Amal Ahmed Mekawey

Associate professor in mycology The Regional Center of Mycology and Biotechnology Al-Azhar University

Assoc. Prof. Sameh Bakr El-Kafrawy

Head of Marine Sciences department National Authority for Remote Sensing and Space Sciences

Examination committee

Prof. Dr. Rawia Fathy Gamal

Prof. of Microbiology- Faculty of Agriculture – Ain Shams University

Prof. Dr. Noha Samir Donia

Head of the Engineering Department -Ain Shams University

Prof. Dr. Mohamed A. Abouzeid

Head of Microbiology Department -Faculty of Science Ain-Shams University

إِنَّهُ مَن

وَ يَصِبِ فَإِنَّ الله

لا يُضيعُ أَجْرَ المحُس

سورةيوسف

Dedication

I dedicate this work to my dear and beloved affectionate mother and sisters, asking Allah to conserve them, provide them with his grace and generosity, and to bless them in the life and the hereafter.

Acknowledgments

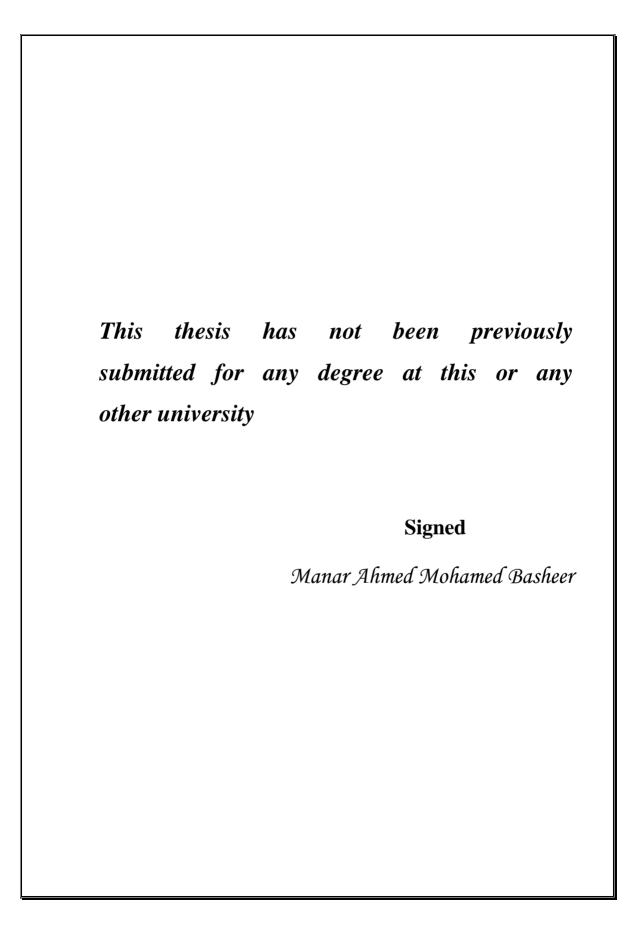
Firstly, my best praise and endless thanks to **Almighty Allah**, who provided me with his grace andblessing in my all life.

I would like to express my grateful thanks to my principal supervisor, **Prof. Dr. Mohamed A. Abouzeid,** Professor of Microbiology, Department of Microbiology, Faculty of Science, Ain Shams University, for his advice, comments, encouragement, support, and constructive criticism through the whole stages of this thesis.

It is a great pleasure for me to express my hearty thanks to my dear supervisor **Prof. Dr. Amal A. Mekawey**, Professor of mycology, The Regional Center of Mycology and Biotechnology, Al-Azhar University, for her advice, assistance, useful suggestions, and patiently answering numerous questionsduring the study.

I wish to express my deepest sense of gratitude and deepest appreciation to my supervisor Assoc. Prof. Dr. Sameh B. El-Kafrawy, Head of Marine Sciences department, National Authority for Remote Sensing and Space Sciences (NARSS) for his excellent advice, enthusiastic guidance, and encouragement towards the successful completion of this study.

It is my pleasant duty to express gratitude to Prof. Dr. Mahmoud H. Ahmad, professor of integrated coastal zone management and marine science, Chairman of NARSS for his support, advice, guidance, and encouragement to complete my thesis.


I would like to thank **Prof. Dr. Magdy T. Khalil,** Professor of Zoology, Zoology Department, Ain Shams University, for his support, guidance, and encouragement to complete my thesis.

I wish to express my deepest sense of gratitude and sincerest appreciation to Assoc. Prof. Dr. Khaled Abu-Bakr, Associate professor, NARSS, for his support and hard work during collection of field data and his significant guidance and valuable advice during my work for succeful completion of my work.

Special thanks to **Dr. Asmaa Hassan**, Researcher, NARSS, for her support during collection of field data and for her encouragement towards the successful completion of this study.

My deep sincere thanks to **Dr.Islam El-Sadek** and **Dr. Ayman Nasr** for their help and support during the collection of the samples. Also, i would like to thank all of those that helped me directly or indirectly to complete my thesis.

Finally, my deepest thanks, profound appreciation, heartfelt gratitude, and all respect to my beloved affectionate mother and sisters for their love, caring, support, unlimited help, advice, and great patience during my study and throughout my life. Mom, i do not know how to thank you enough for providing me with the opportunity to be where i am today. I love you so much.

Abstract

Medicinal plants endophytes are a promising trend to meet the rising threat of drug-resistant strains of human pathogens. Mangrove plants (Avicennia marina) have been used in folklore medicines where extracts from mangrove species have confirmed inhibitory activity against human, animal and plant pathogens. Marine endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. This study focuses particularly on testing the antimicrobial activity of mangrove endophytic fungi isolated from South Safaga and Wadi Abu Hamrah mangrove along the Red Sea against different human pathogens, for mapping, monitoring of mangroves ecosystem and for determining their spectral properties using hyperspectral remote sensing techniques. A total of To endophytic fungi were isolated from mangroves leaves at two study areas and were identified. Crude extracts of the endophytic fungi were screened for their antimicrobial activity using well diffusion method against the following pathogenic microorganisms; S. aureus, S. pyogenes, P. vulgaris, K. pneumoniae, B. subtilus, C. albicans, P. chrysogenum and A.niger. The most effective extracts which exhibited significant activity against most of the tested pathogens were obtained from Aspergillus aculeatus, Aspergillus niger, Aspergillus terreus, Eurotium amstelodami, Exserohilum rostratum, and Mucor racemosus.

Keywords: Mangroves, *Avicennia marina*, The Red Sea, Endophytic fungi, Antimicrobial activity.

LIST OF ABBREVIATION

ANOVA	Analysis of Variance
ASD	Analytical Spectral Devices
°C	Degree Celsius
ENVI	Environmental for Visualizing images
ETM	Enhanced Thematic Mapper
ETM+	Enhanced Thematic Mapper (on Landsat satellites)
FLAASH	Fast Line-of-sight Atmospheric Analysis of Spectral
	Hypercubes
FOV	Field of View
GIS	Geographical Information System
GPS	Global Positioning System
HSD	Honest Significant Difference
Landsat	A series of NASA earth resource satellites
LULC	Land Use / Land Cover
MEA	Malt Extract Agar medium
MEB	Malt Extract Broth medium
MIR	Middle Infrared
MSS	Multiple Spectral Scanner
NARSS	National Authority for Remote Sensing and Space Sciences
NASA	National Aeronautics and Space Administration
NDVI	Normalized Difference Vegetation Index
NIR	Near Infrared
NRPS	Non-ribosomal peptide synthase
PKS	Polyketide synthase
SWIR	Short Wave Infrared
TM	Thematic Mapper (on Landsat satellites)
UTM	Universal Transverse Mercator
WGS	Worldwide Geographic System

List of Contents

Contents	Page
Chapter one: Introduction	
Aim of thesis study and objectives	
Chapter Two: Review of Literature	
2.1 Mangroves	4
2.2 Mangrove importance	7
2.3 Red Sea	8
2.4 Remote Sensing and Geographical Information System (GIS)	9
2.5 Hyperspectral data for measurings spectral signature of	11
mangroves	
2.6 Endophytes (Fungal Endophytes)	
2.7 Marine-derived fungal-host interaction	17
2.8 Mangrove endophytic fungi	18
2.9 Mangrove endophytic fungi as source of bioactive	20
compounds	
2.10 Secondary metabolites	21
2.11 Secondary metabolites of mangrove endophytic fungi	22
2.12 Antimicrobial activity of the secondary metabolites of	25
mangrove endophytic fungi	
Chapter Three : Materials and Methods	29
3.1 The study area	29

Contents 3.2 Sampling	
3.2 Sampling	33
3.2.1Field site sampling and collection of the plant material	33
3.3 Remote Sensing Studies	37
3.3.1 Data availability& instruments	37
3.3.2 Instruments and software	41
3.3.2.1 Instruments	
3.3.2.2 Software	42
3.3.3 Field data collection	42
3.3.4 Spectroradiometer calibration	43
3.3.5 Data Analysis	43
3.3.6 One-Way ANOVA and Tukey's HSD analysis	44
3.3.7 Image Preprocessing	44
3.3.7.1 Layer Stacking	44
3.3.7.2 Image subsetting	44
3.3.7.3 Geometric correction	45
3.3.7.4 Image enhancement	46
3.3.7.5 Atmospheric correction	46
3.3.7.6 Pan-Sharpening	53
3.3.8 Image Processing	57
3.3.8.1 Land Use / Land Cover (LULC) mapping	57
3.3.8.2 Normalized Difference Vegetation Index (NDVI)	57
3.3.8.3 Mangroves area change detection	57
3.4 Microbiological Studies	58

Contents	Page
3.4.1 Media and Cultivation Conditions	58
3.4.2 Isolation of fungal endophytes	58
3.4.3 Production of Crude Metabolites	59
3.4.4 Identification of isolates	61
3.4.5 Antimicrobial activity assay	61
Chapter Four : Results	63
4.1 Hyper-Spectral Signature	63
4.2 The variance among spectral signature data of mangroves at the ten sites	72
4.3 Land Use / Land Cover mapping	74
4.4 Normalized Difference Vegetation Index (NDVI)	75
4.5 Change detection of mangroves from 1984 to 2017	77
4.6 Isolation and identification of mangrove endophytic fungi	78
4.7 Antimicrobial activity of endophytic fungi	101
Chapter Five : Discussion	108
Summary	115
References	118
Arabic Summary	-

List of Figure

Figure	Page
Figure (1): World map of Mangrove distribution zones and the number of Mangrove species	5
Figure (2): Mangroves stands along the Egyptian Red Sea coast	29
Figure (3): Satellite image of the two study areas	32
Figure (4): The ten sites at the two study areas	34
Figure (5): Photos of mangroves at the two sites during samples collection	36
Figure (6): Digital format of multispectral satellite image	37
Figure (7): Trimble GPS	41
Figure (8): ASD Fieldspec spectroradiometer	41
Figure (9): Image Subsetting	45
Figure (10): Before and after atmospheric correction of Landsat-	47
5 image (1984) (a) South Safaga Stand (b) Wadi Abu Hamrah	
Stand	
Figure (11): Before and after atmospheric correction of Landsat-	48
4 image (1990) (a) South Safaga Stand (b) Wadi Abu Hamrah	
Stand	
Figure (12): Before and after atmospheric correction of Landsat-	49
5 image (2000) (a) South Safaga Stand (b) Wadi Abu Hamrah Stand	
Figure (13): Before and after atmospheric correction of Landsat-	50
7 image (2003) (a) South Safaga Stand (b) Wadi Abu Hamrah	
Stand	
Figure (14): Before and after atmospheric correction of Landsat-	51
7 (2011) (a) South Safaga Stand (b) Wadi Abu Hamrah Stand	
Figure (15): Before and after atmospheric correction of Landsat-	52
8 (2017) (a) South Safaga Stand (b) Wadi Abu Hamrah Stand	
Figure (16): Before and after Pan-sharpening of Landsat-7 image	54
(2003) (a) South Safaga Stand (b) Wadi Abu Hamrah Stand	55
Figure (17): Before and after Pan-sharpening of Landsat-7 image	55
(2011) (a) South Safaga Stand (b) Wadi Abu Hamrah Stand	56
Figure (18): Before and after Pan-sharpening of Landsat-8 image (2017) (a) South Safaga Stand (b) Wadi Abu Hamrah Stand	30

Figure	Page
Figure (19): Schematic overview of the isolation of mangroves	
endophytic fungi from Avicennia marina leaves	
Figure (20): Schematic overview of solvent extraction	61
Figure (21):Mean hyper-spectral signature of mangroves at site1	63
Figure (22): Mean hyper-spectral signature of mangroves at site2	64
Figure (23): Mean hyper-spectral signature of mangroves at site3	64
Figure (24): Mean hyper-spectral signature of mangroves at site4	64
Figure (25): Mean hyper-spectral signature of mangroves at site5	65
Figure (26): Mean hyper-spectral signature of mangroves at site6	65
Figure (27): Mean hyper-spectral signature of mangroves at site7	65
Figure (28): Mean hyper-spectral signature of mangroves at site8	66
Figure (29): Mean hyper-spectral signature of mangroves at site9	66
Figure (30): Mean hyper-spectral signature of mangroves at site10	66
Figure (31): Relationship among all hyper-spectralsignature values of mangroves at the ten sites	67
Figure (32): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (1)	67
Figure (33): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (2)	68
Figure (34): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (3)	68
Figure (35): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (4)	68
Figure (36): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (5)	69
Figure (37): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (6)	69
Figure (38): Mean hyper-spectral signature of mangroves measured directly by leaf clip at site (7)	69