THE USE OF SOLAR DISTILLERS IN SALT WATER DESALINATION

By

NAGWA MOHAMED TAHA IBRAHIM

B.Sc. Agric. Eng. and Biological, Fac. Agric., Ain Shams Univ., 2015

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(On Farm Machineryand Power Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

THE USE OF SOLAR DISTILLERS IN SALT WATER DESALINATION

By

NAGWA MOHAMED TAHA IBRAHIM

B.Sc. Agric. Eng. and Biological, Fac. Agric., Ain Shams Univ., 2015

This thesis for M.Sc. degree has been approved	by:
Dr. Mahmoud Abd Elrahman El Shazly	
Prof. Emeritus of Agricultural Engineering,	Faculty of Agriculture,
Zagazig University	
Dr. Ahmed Abou El-Hassan Abdel-Aziz	
Professor of Agricultural Engineering, Facu	lty of Agriculture, Ain
Shams University	
Dr. Moustafa Fahim Mohammed Abd El-Salan	n
Associate Prof. of Agricultural Engineering,	Faculty of Agriculture,
Ain Shams University	

Date of Examination: 14 / 11 / 2019

THE USE OF SOLAR DISTILLERS IN SALT WATER DESLINATION

By

NAGWA MOHAMED TAHA IBRAHIM

B.Sc. Agric. Eng. and Biological, Fac. Agric., Ain Shams Univ., 2015

Under the supervision of:

Dr. Mohamed Nabil EL Awady (Late)

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Faculty of Agriculture, Ain Shams University

Dr. Moustafa Faheem Mohamed Abdel-Salam

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Faculty of Agriculture, Ain Shams University

ABSTRACT

Nagwa Mohamed Taha Ibrahim: The use of solar distillers in salt water desalination. Unpublished M. Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2019.

In this study solar energy was utilized to distillate and purify saline water throw a conventional solar still.. which is considered one of the best solutions to over come the potable water shortage in remote arid areas. The experiments were conducted at four saline water depths (1, 2, 3) and 4 cm from the still bottom) and at two levels of water salinty (15000 ppm and 35000 ppm). But this system is not popular because of its lower productivity so the aim of this study is to used another systems to increase the performance of the solar desalination. Wick solar still using one of the methods to increase the productivity is by decrease the volumetric heat capacity of the basin. The use of tilted wick material in the basin will increase the evaporation area and enhance the production. Research experiment was statistically designed and practically applied at the Solar Energy Laboratory, Dept. of Agric. Eng., Fac. of Agric., Ain Shams University, Cairo (ϕ =30°N).

The results proved that the highest quantity of distillate water rate in conventional still was 3487 mL at water depth of 1cm and water salinity of 15000 ppm in May.while, the lowest value of distillate water rate to 1615 mL at water depth of 1 cm with salinity 35000 ppm in January. On the other hand the results explained that the highest amount of distillate water rate in wick solar still was 5066 mL at water salinity at 15000 ppm in May.while the loewst value of distillate water rate was 2844 mL at salinity 35000 ppm in January.

Keywords: Solar desalination; Solar still; Tilted wick; Passive solar stills; Active solar stills.

ACKNOWLEDGEMENT

First of all, thanks to **ALLAH** for his blessings.

The author wishes to express her deep appreciation and gratitude to **Prof. Dr. Mohamed Nabil El Awady**, Prof. Emeritus of Agric. Engineering, Dept. of Agric. Engineering, Fac. Of Agric., Ain Shams University, for suggesting the problem of study and for his kindly supervision throughout this work. The author is grateful for his valuable discussions, suggestions and helpful criticism.

I would like to express my sincere gratitude to **Dr**. **Moustafa Faheem Mohamed Abd El-Salam,** Associate Prof. of Agric Engineering, Dept. Fac. of Agric., Ain Shams University for the continuous support of my **M.Sc.** study and related research for his patience, motivation and immense knowledge. His guidance helped me in all the time.

My gratitude also goes to **the Academy of Scientific Research and Technology (ASRT)** for making this study possible by providing its funding .

Special thanks to all staff members of Agricultural Engineering Department for their valuable help during carrying out the experiments of this work.

At last, I would like to thank all my family for their help and support, entire process for me to complete my M.Sc. study. Without their supports, I would never have the courage to pursue my dream.

CONTENTS

Subject	Page
List of tables	v
List of figures	vi
List of abbreviations	ix
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
2. 1 Water resources	4
2.2 renewable sources of energy	5
2.3 Desalination methods	8
2.3.1 thermal desalination	9
2.3.1.1 Multi Stage Flash (MSF)	9
2.3.1.2. Multi Effect distillation (MED):	10
2.3.1.3 Vapor compression (VC)	10
2.3.2 Membrane desalination:	11
2.3.2.1. Reverse Osmosis (RO):	11
2.3.2.2. Electrodialysis (ED):	13
2.3.3. Solar Desalination	14
2.4 Classification Single-effect solar still:	14
2.4.1 passive solar still	15
2.4.1.1 Basin stills	15
2.4.1.2 Diffusion stills	16
2.4.1.3 Wick stills	17
2.4.1.4 Solar still greenhouse combination	19
2.4.1.5 Weir type solar still	20
2.4.1.6 Spherical stills	21
2.4.1.7 Tubular stills	21
2.4.1.8 Pyramid and rectangular stills	22
2.4.1.9 Multiple-effect basin stills	22
2.4.2 Active solar still	23

3.4.2.1. Solar still integrated with solar heater (flat plate	
collector, evacuated tube collector)	23
2.4.2.1.1 Solar still coupled with flat plate collector	
(FPC):	23
2.4.2.1.2 solar still coupled with evacuated tube solar	
collector.	24
2.4.2.2. Solar still integrated with solar concentrators	26
2.4.2.2.1 Solar still coupled with parabolic trough	26
collector.	
2.4.2.2.2 Parabolic solar concentrator:	28
2.4.2.3 Solar still coupled with hybrid PV/T system:	29
2.4.2.4 Solar still with heat exchanger:	30
2.4.2.4.1 Solar Collectors	30
2.5 Solar desalination systems	32
2-5-1 direct Solar desalination system	32
2-5-2 indirect Solar desalination system	33
2-6 Parameters affecting solar still productivity:	35
2.6.1 Climatic Condition	36
2.6.1.1 Solar radiation:	36
2.6.1.2 Wind speed	36
2.6.1.3 Ambient temperature	37
2.6.1.4 dust and cloud cover	37
2.6.2 Design Condition	37
2.6.2.1 Water depth	37
2.6.2.2 Inclination of cover.	38
2.6.3 Operational Conditions	38
2.6.3.1 salt concentration	38
III. MATERIALS AND METHODS	39
3.1 Materials	39
3.1 System description:	39
3.2 Instrumentation and measurements.	43
3.2.1Temperature data logger:	43

3.2.1.1 Data acquisition system	43
3.2.2 Thermometer type -k:	45
3.2.3 Solar power meter:	46
3.3 Methods:	46
3.4 thermal analysis:	47
3.4.1 Internal heat transfer:	49
3.4.2 External heat transfer	50
3.4.2.1Top loss heat transfer:	50
3.4.2.2 Bottom and side loss heat transfer:	51
3.5 The daily thermal efficiency	53
IV. RESULTS AND DISCUSSION	54
4.1 Basin solar still (2018)	54
4.1.1. Hourly Variations of Ambient temp. and Solar	
Radiation	54
4.1.2. Hourly Variations of Ambient, Glass out, Glass in,	
Vapor Temperature:	56
4.1.3. Hourly distilled water under different water depth and	
water salinity.	56
4.1.4 Accumulated Distillated Water under Different Water	
Depth and Water Salinity	58
4.1.5 Effect of the Depth of Water and Water Salinity on the	
Average Accumulated Distillate Water:	59
4.1.6 Monthly Water Productivity:	60
4.2 Basin and Wick Solar Still (2019)	61
4.2.1 Hourly Variations of Ambient Temperature and Solar	
Radiation for Basin and Wick Solar Still	61
4.3 Basin Solar Still (2019)	64
4.3.1 Hourly Variations of Water, Vapor, Inner Glass and	
Ambient Temperature for Basin Solar Still	64
4.3.2 productivity of Basin Solar Still for Different Months	
	66
4.4 Wick Solar Still	66

4.4.1 Hourly Variations of wick, vapor, Inner Glass and	
Ambient Temperature for Wick Solar Still:	66
4.4.2 Water Productivity for Different months with Salinity	
15000 ,35000 ppm for Wick Solar Still	69
4.5 Water Productivity of Basin Solar Still at 1 cm and Wick	
Solar Still for Different Months	69
3.6 Cost analysis.	70
SUMMARY AND CONCLUSION	75
REFERENCES	77
APPENDIX	85
ADARIC SUMMADV	96

LIST OF TABLES

Table No.	Subject	page
1	EC and PH for 4 samples for modified solar still	70
2	Cost of fabricated for basin solar still	73
3	Cost of fabricated for wick solar still:	74
4	Egyptian water resources and water balance 1980-	
	2025.	85
5	Solar Energy collectors.	85
A-1	Variations of water, vapor, inner glass and outer glass	
	temperature for conventional still in January (2019)	
	with salinity 15000 ppm.	86
A-2	Variations of water, vapor, inner glass and outer glass	
	temperature for conventional still in January (2019)	
	with salinity 35000 ppm.	87
A-3	Variations of water, vapor, inner glass and outer glass	
	temperature for modified still in January (2019) with	
	salinity 15000 ppm.	88
A-4	Variations of water, vapor, inner glass and outer glass	
	temperature for modified still in January (2019) with	
	salinity 35000 ppm.	89
A-5	Variations of water, vapor, inner glass and outer glass	
	temperature for conventional still in May (2019) with	
	salinity 15000 ppm.	90
A-6	Variations of water, vapor, inner glass and outer glass	
	temperature for conventional still in May (2019) with	
	salinity 35000 ppm.	91
A-7	Variations of water, vapor, inner glass and outer glass	
	temperature for modified still in May (2019) with	
	salinity 15000 ppm.	92

A-8 Variations of water, vapor, inner glass and outer gla		
	temperature for modified still in May (2019) with	
	salinity 35000 ppm.	93
A-9	Water productivity for conventional and modified	
	solar still at salinity 15000 ppm (2019).	94
A-10	Water productivity for conventional and modified	
	solar still at salinity 35000 ppm (2019).	94

LIST OF FIGURES

Figure	Subject	Page
No.	W 111 1 77.4	
1	World total energy-by IEA.	6
2	World energy consumption	6
3	The use of renewable energy sources in water	
C	desalination	7
4	Principle of operation of the multi-stage flash	
	(MSF) system	9
5	Schematic presentation of horizontal tubes multi-	
3	effect distillation (MED) plant	10
6	Schematic diagram of VC (MVC and TVC) units	11
7	principle of operation of a reverse osmosis system.	12
8	Principle of operation of electrodialysis (ED)	13
0	Various designs of single effect passive and active	
9	solar stills	15
10	Diffusion still.	17
11	System principle for water desalination integrated	
	in a greenhouse roof.	20
12	Weir-type still.	21
13	Processes in a Flat-plate Collector Systems.	23
14	Assembly and Function of the Evacuated Tube	
	Collector with heat Pipe.	26
15	Schematic of a parabolic trough collector.	27
16	Schematic of a parabolic dish collector.	29
17	Still coupled with hybrid (PV/T) system.	30
18	Schematic diagram of a compound parabolic	
10	collector	32
19	Parameters affecting basin type solar still	32
1/	productivity	35
20	•	
20	Photo of the solar stills	40

(21-A)	An elevation, side view and plan of basin solar	
	still.	41
(21-B)	An elevation, side view and plan of wick solar	
	still.	42
22	Schematic diagram the process of the system.	43
23	The interface of software program for the data	
	acquisition system	44
(24-A)	Thermocouple locations data in solar still.	45
(24-B)	Temperature data Logger	45
25	Thermometer type -k	45
26	Solar power meter.	46
27	Schematic diagram the variable effect on the	
	system.	47
28	Schematic of energy flow in a single basin single	
	slope solar still.	48
29	External and internal heat transfer for both solar	
	still.	49
(30 a,b, c	Hourly Variations of Ambient temperature and	
and d)	Solar Radiation.	54 -55
31	Hourly variations of ambient, outer glass, basin	
	water and inner glass temp.	56
(32 a,b, c	Hourly distilled water under different water depth	
and d)	and water salinity using basin solar still.	57-58
33	Effect of the depth of water, water salinity on the	
	accumulated distillate water	59
34	Effect of water depth on water productivity under	
	water salinity of 15000 and 35000 ppm.	60
35	The water productivity for months with salinity of	
	15000 and 35000 ppm under water depths 1,2,3	
	and 4 cm. (2018)	61
(36 a,b,	Hourly variations of ambient temperature and	
c,d and e)	solar radiation in different months.	62-63