

DEVELOPMENT OF AN ANALYTICAL MODEL TO PREDICT OIL RESERVOIRS PERFORMANCE USING MECHANICAL WAVES PROPAGATION

By

Hesham Ahmed Abo Zaid Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

DEVELOPMENT OF AN ANALYTICAL MODEL TO PREDICT OIL RESERVOIRS PERFORMANCE USING MECHANICAL WAVES PROPAGATION

By Hesham Ahmed Abo Zaid Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Ahmed Hamdi El-Banbi	Prof. Dr. Mahmoud Abu El Ela	
Professor	Professor	
Petroleum Engineering Department	Petroleum Engineering Department	
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University	
Dr. Sherif Ac	del Akl	
Associate Pro	fessor	
Geotechnical Engineeri	ing Department	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

Faculty of Engineering, Cairo University

DEVELOPMENT OF AN ANALYTICAL MODEL TO PREDICT OIL RESERVOIRS PERFORMANCE USING MECHANICAL WAVES PROPAGATION

By **Hesham Ahmed Abo Zaid Mohamed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Petroleum Engineering

Approved by the
Examining Committee

Prof. Dr. Ahmed Hamdi El-Banbi, Thesis Main Advisor

Prof. Dr. Mahmoud Abu El Ela, Advisor

Dr. Sherif Adel Akl, Advisor

Prof. Dr. El Sayed Ahmed El Tayeb, Internal Examiner

Eng. Khaled El Sayed Mowafi,
Chairman of Khalda petroleum company.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Hesham Ahmed Abo Zaid Mohamed

Date of Birth: 30/09/1991 **Nationality:** Egyptian

E-mail: H.A.AboZaid@hotmail.com

Phone: +002-0100 199 1384 **Address:** El gawadia, Bliqas,

Dakahlia, Egypt.

Registration Date: 01/10/2013 **Awarding Date:** / /2020

Degree: Master of Science **Department:** Petroleum Engineering

Supervisors:

Prof. Dr. Ahmed Hamdi El-Banbi Prof. Dr. Mahmoud Abu El-Ela

Dr. Sherif Adel Akl

Examiners:

Eng. Khaled El Sayed Mowafi (External examiner)

- Chairman of Khalda petroleum company.

Prof. Dr. El Sayed Ahmed El Tayeb (Internal examiner)
Prof. Dr. Ahmed Hamdi El-Banbi (Thesis main advisor)

Prof. Dr. Mahmoud Abu El Ela (Advisor)
Dr. Sherif Adel Akl, Advisor (Advisor)

Title of Thesis:

Development of An Analytical Model to Predict Oil Reservoirs Performance Using Mechanical Waves Propagation

Key Words:

Seismic stimulation; EOR Analytical Predictive Models; Wave induced fluid flow theory; Mechanical waves EOR; Unconventional EOR Techniques.

Summary:

This study is implemented to develop an analytical model to predict the performance of the mechanical waves as an EOR technique. Several factors that affect the wave propagation profile have been incorporated in the model. In addition, several affection mechanisms of the wave on the reservoir were considered. The model was validated against some lab experiments along with field cases. A sensitivity analysis was implemented to specify the optimum application ranges of the wave source and reservoir rock and fluids characteristics.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

To my family, my professors, and my friends.

Acknowledgments

First of all, I would like to express my endless thanks to **Allah** for guiding me and giving me the ability and patience to perform this research.

I want to thank my entire family for supporting me to achieve my dream. They provided me with the appropriate working environment and always gave me the motivation that encouraged me to continue.

I would like to express my deepest thanks and appreciation to the supervisors of this thesis: *Prof Dr. Ahmed Hamdi El-Banbi*, *Prof Dr. Mahmoud Abu El Ela*, and *Dr. Sherif Adel Akl* for guiding me in my way. They did not only give me the appreciable brilliant scientific guidance, but also, they taught me the way of thinking in solving the most complicated problems. They taught me how to face any problem, analyze it, find all the applicable solutions, and choose the optimum one.

My deepest thanks go to the members of the mining, petroleum and metallurgy department - Faculty of Engineering, Cairo University. All my professors have participated, directly or indirectly, in this work. My finest thanks to *Prof. Dr. Mohamed Helmy Sayyouh*. He is wisely leading the EOR team to achieve this great success. Special thanks to *Prof. Dr. El Sayed Ahmed El Tayeb*. He highlighted some technical points that increased the applicability of my work and showed its strengths. My gratitude to the jury (*Prof. Dr. El Sayed Ahmed El Tayeb* and *Eng. Khaled El Sayed Mowafi*) for accepting to judge the thesis.

Finally, I really wish nothing more than to make all of you proud.

Hehsam Ahmed Abo-Zaid

Table of Contents

DISCLA	MER	I
DEDICA	TION	II
ACKNO	WLEDGMENTS	. III
TABLE (OF CONTENTS	IV
	TABLES	
	FIGURES	
	CLATURE	
	CT	
CHAPTE	CR 1: INTRODUCTION	1
CHAPTE	CR 2 : LITERATURE REVIEW	4
2.1.	Introduction	4
2.2.	SEISMIC WAVES	4
2.2.1.	P-waves	4
2.2.2.	S-waves	5
2.2.3.	Impedance, Reflectivity, and Transmissivity	5
2.2.4.	Quality Factor (Q)	7
2.3.	APPLICATION OF WAVES IN PETROLEUM RESERVOIRS	7
2.4.	ELASTIC WAVE VELOCITY DISPERSION AND ATTENUATION THEORIES	8
	Biot Original Theory	
	Mavko–Jizba Squirt Relations	
	Extension of Mavko–Jizba Squirt Relations for all Frequencies	
	Muller and Gurevich's Model	11
2.5.	COMPARISON BETWEEN THE SEISMIC WAVE PROPAGATION AND	
	ATTENUATION MODELS	
2.6.	LAB EXPERIMENTS OF USING ULTRASONIC WAVES AS AN EOR AGENT	13
2.6.1.	Effect of Wave Application on Produced Oil Temperature	13
2.6.2.	Effect of Wave Application on Produced Oil Emulsification	18
2.6.3.	Effect of wave frequency and power on oil recovery and residual oil saturation.	
2.7.	FIELD APPLICATIONS OF SEISMIC VIBRATIONS EOR METHOD	25
	Downhole Harmonic Vibration Oil-displacement System (DHVOS)	
2.7.2.	The Russian ASR Hydro-impact Tool.	
2.8.	CONCLUDING REMARKS	31
	R 3 : STATEMENT OF THE PROBLEM, OBJECTIVE AND	
METHO	DOLOGY	32
3.1.	STATEMENT OF THE PROBLEM	32
3.2.	OBJECTIVE	32
3.3.	METHODOLOGY	32

CHAPTE	R 4 : METHODOLOGY IMPLEMENTATION	34
4.1.	Introduction	34
4.2.	BASE THEORIES BEHIND THE MODEL	
4.3.	MODIFICATIONS OF MULLER AND GUREVICH'S MODEL	36
	Extending Muller's Model to 3-D.	
	Wave Attenuation Calculation in dB	
	Wave Power and Pressure Distribution Calculation	
	Wellbore Losses Calculation	
4.3.5.	Temperature Calculation	43
4.3.6.	Oil Density and Viscosity Changes	45
	Flow Rate Calculation	
4.3.8.	Material Balance Calculations	49
4.4.	MODEL CAPABILITIES AND ASSUMPTIONS	50
4.5.	MODEL STRUCTURE	51
4.6.	INPUT DATA	51
4.7.	OUTPUT DATA	54
4.8.	MODEL PROGRAMMING LANGUAGE AND CONCEPT	
CHAPTE	R 5 : RESULTS AND DISCUSSION	57
5.1.	Introduction	57
5.2.	VALIDATING THE MODIFIED MODEL AGAINST THE ORIGINAL MULLER'S	
	Model	57
5.3.	MODEL VALIDATION AGAINST LAB EXPERIMENTS	
5.4.	FIELD APPLICATIONS	
• • • •	Liaohe Oilfield	
	Huabei Oilfield	
	Shengli Oilfield	
	Sandstone Reservoir.	
	Diatomite Reservoir	
	EFFECT OF WAVE PROPAGATION ON THE RESERVOIR PERFORMANCE	
	Effect of Wave Propagation on a Hypothetical Field Case	
A.	Assumed Input Data	
B.	Wave Parameters Distribution Through the Reservoir	
C.	Reservoir Performance Under Wave Application	77
5.5.2.	Effect of Wave Propagation on An Egyptian Oilfield	
5.6.	THE IMPACT OF THE OPERATING CONDITIONS ON WAVE APPLICATION	
5.6.1.	Effect of Wave Frequency	
	Effect of Wave Power	
5.6.3.	Effect of the Distance Between the Producing Well and the Wave Source	. 100
	Effect of the Reservoir Porosity	
	Effect of the Reservoir Permeability	
5.6.6.	Effect of the Reservoir Oil Density	107
5.6.7.	Effect of the Reservoir Initial Temperature	. 110
5.6.8.	Effect of the Wave Source's Wellbore Fluids	112
5.7.	DISCUSSION	116

120	CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS
120	6.1. Conclusions
121	6.2. RECOMMENDATIONS
REFERENCES	

List of Tables

Table 2.1. Comparison between the different wave propagation models	12
Table 4.1. Input data of the developed model	
Table 5.1. Minimum, Maximum, and Average deviation of calculated from measure	d
temperatures of water	
Table 5.2. Minimum, Maximum, and Average deviation of calculated from measure	
temperatures of vaseline	
Table 5.3. Summary of the input data of Liaohe oilfield case	
Table 5.4. Summary of the program run results of Liaohe oilfield case	
Table 5.5. Summary of the input data of Huabei oilfield case	
Table 5.6. Summary of the input data of Shengli oilfield case	
Table 5.7. Summary of the input data of Sandstone reservoir case	
Table 5.8. Summary of the input data of Diatomite reservoir case	
Table 5.9. Summary of the assumed input data of the hypothetical case	75
Table 5.10. Comparison between the different reservoir performances while using an	
not using the waves	84
Table 5.11. Summary of the available and assumed input data of the Egyptian oilfiel case	
Table 5.12. The run results summary of the first group of wells located within 500m	
radius	
Table 5.13. The run results summary of the second group of wells located between 5	500
and 1000 m radius	
Table 5.14. The run results summary of the third group of wells located between 100	00
and 1500 m radius	
Table 5.15. The run results summary of the fourth group of wells located between 15	
and 2000 m radius	
Table 5.16. The run results summary of the entire 35 active producing wells	
Table 5.17. Comparison between the different reservoir performances while changing	
the wave frequency	
Table 5.18. Comparison between the different reservoir performances while changing	
the wave Power	
Table 5.19. Comparison between the different reservoir performances while changing	
the producing well distance from the wave source	_
Table 5.20. Comparison between the different reservoir performances while changing	
the reservoir rock porosity	
Table 5.21. Comparison between the different reservoir performances while changing	
the reservoir rock permeability	
Table 5.22. Comparison between the different reservoir performances while changing	
the reservoir oil density	109
Table 5.23. Comparison between the different reservoir performances while changing	ıg
the reservoir initial temperature	112
Table 5.24. Wellbore fluid effect on the transmission ratio of the wave while	
transmitting from wellbore fluids into the reservoir rock	113
Table 5.25. Comparison between the different reservoir performances while changing	
the wellbore fluid type	_
Table 5.26. The optimum range of the critical controlling parameters	

List of Figures

Figure 2.1. Seismic P wave diagram[14]	
Figure 2.2. Seismic S wave diagram[14]	
Figure 2.3. Schematic diagram of the wave movement	
Figure 2.4. Mavko and Jizba squirt flow schematic diagram[25]	
Figure 2.5. Muller and Gurevich's patchy reservoir sample schematic diagram[36]	11
Figure 2.6. The setup of ultra-sonicated fluid flow experiment[38]	
Figure 2.7. Temperature of water versus time at various power outputs[38]	14
Figure 2.8. Temperature rises for engine-oil, vaseline, and kerosene[38]	14
Figure 2.9. Reduction in viscosity of kerosene[38]	15
Figure 2.10. Reduction in viscosity of vaseline[38]	15
Figure 2.11. Reduction in viscosity of SAE-10 (engine oil)[38]	16
Figure 2.12. Recovery of kerosene as result of straight and sonicated water-	
flooding[38]	16
Figure 2.13. Recovery of vaseline as result of straight and sonicated water-flooding	g[38]
Figure 2.14. Recovery of engine-oil by straight and sonicated water-flooding[38]	17
Figure 2.15. Schematic diagram of free oil-water interface emulsification experime	
setup[39]	
Figure 2.16. Schematic diagram of the Hele-Shaw model emulsification experimer	ıtal
setup[40]	
Figure 2.17. Configuration of brine and oil emulsification and coalescence of brine	;
droplets after 30 min applying ultrasonic waves in Hele-shaw model.	
After 0 min, (b) after 12 min, (c) after 16 min, (d) after 17 min, (e) after	er 30
min[40]	
Figure 2.18. Effect of irradiation time on dispersed oil-phase volume in water-phase	se
emulsion at constant power[39]	20
Figure 2.19. Effect of irradiation time on dispersed water-phase volume in oil-phase	se
emulsion at constant power[39]	20
Figure 2.20. Water droplet size distribution in paraffin oil emulsion under ultrasour	
radiation; (a) after 12 min, (b) after 30 min[40]	21
Figure 2.21. Effect of irradiation power on dispersed phase droplet size at constant	
time[39]	
Figure 2.22. Recovery model experimental setup[41]	23
Figure 2.23. Oil recovery versus time for experiments of heavy and light oil (100 a	
15 cp) with ultrasound frequency of 25 kHz and power of 250 W and	
without ultrasound application[41]	
Figure 2.24. Residual oil versus time for experiments done at different ultrasound	
frequencies and constant power[41]	24
Figure 2.25. Residual oil versus time for experiments done at different ultrasound	
power and constant frequency[41]	24
Figure 2.26. Effect of seismic on production in the range 300-400m (Total 23	
wells)[42]	27
Figure 2.27. ASR Hydro-Impact Tool [18]	
Figure 2.28. Sandstone reservoir seismic stimulation[18]	
Figure 2.29. Diatomite reservoir seismic stimulation[18]	
Figure 2.30. Carbonate reservoir seismic stimulation[18]	

Figure 4.1. Point-source wave propagation	38
Figure 4.2. Cross-section of the point-source wave propagation	
Figure 4.3. Model application approach to each grid block	
Figure 4.4. Wave point-source located in well bore schematic diagram	
Figure 4.5. Schematic diagram of the well-known Snell's Law	
Figure 4.6. Wave power/energy loss while moving from Point 1 to Point 2	
Figure 4.7. Correlation between reservoir oil viscosity and residual oil saturation[47]	
Figure 4.8. Leverett J-function[49]	
Figure 4.9. Flow chart of the developed model.	
Figure 4.9. Flow chart of the developed model (Cont'd)	
Figure 5.1. Wave inverse quality factor validation versus Muller's model	
Figure 5.2. Wave velocity validation versus Muller's model	
Figure 5.3. Comparison between the developed model calculations and lab results of	
temperature of water versus time at various power outputs	
Figure 5.4. Temperature of water versus time at various wave power outputs[38]	
Figure 5.5. Model calculations showing a logical distribution	
Figure 5.6. Comparison between the developed model calculations and lab results of	
temperature of vaseline versus time	.61
Figure 5.7. Effect of seismic on production from Liaohe oilfield in the range 300-	
400m (Total 23 wells)[42]	
Figure 5.8. The daily oil production with and without the wave application Vs Liaoho	
oilfield in the range 300-400m (Total 23 wells)	
Figure 5.9. The water cut with and without the wave application Vs Liaohe oilfield in	
the range 300-400m (Total 23 wells)	.64
Figure 5.10. Oil production rate with and without wave application versus time for	
Huabei oilfield	.66
Figure 5.11. The produced water oil ratio versus time with and without wave	
application for Huabei oilfield	
Figure 5.12. The average reservoir oil viscosity versus time for Shengli oilfield	.68
Figure 5.13. Oil production rate with and without wave application versus time for	70
Sandstone reservoir	. /0
Figure 5.14. The cumulative oil production versus time with and without wave	7.1
application for Sandstone reservoir	./1
Figure 5.15. The produced water oil ratio versus time with and without wave	
application for Sandstone reservoir	.71
Figure 5.16. The cumulative oil production versus time with and without wave	
application for Diatomite reservoir	.73
Figure 5.17. The produced water oil ratio versus time with and without wave	
application for Diatomite reservoir	
Figure 5.18. The wave attenuation distribution in the reservoir around the wave source	
for the hypothetical case	
Figure 5.19. The wave pressure distribution in the reservoir around the wave source f	
the hypothetical case	
Figure 5.20. The wave power distribution in the reservoir around the wave source for	
the hypothetical case	
Figure 5.21. The average reservoir temperature versus time for the hypothetical case	
Figure 5.22. The average reservoir oil density versus time for the hypothetical case	
Figure 5.23. The average reservoir oil viscosity versus time for the hypothetical case	
Figure 5.24. Oil production rate with and without wave application versus time for the	
hypothetical case	.80

Figure 5.25.	Water production rate with and without wave application versus time for
	the hypothetical case80
Figure 5.26.	The produced water oil ratio versus time with and without wave
F: 5.27	application for the hypothetical case
Figure 5.27.	The cumulative oil production versus time with and without wave application for the hypothetical case
Eigura 5 20	11
rigule 3.26.	The cumulative oil recovery factor versus time with and without wave application for the hypothetical case
Figure 5 29	The average oil saturation through the reservoir versus time with and
1 15010 5.27.	without wave application for the hypothetical case83
Figure 5.30.	The average reservoir pressure versus time with and without wave
1 18010 0.00.	application for the hypothetical case83
Figure 5 31	The Egyptian oilfield wells distribution
-	The Egyptian oilfield monthly Production data for 2.5 years from 35 wells
6	85
Figure 5.33.	The Egyptian oilfield exponential decline curve for the production data
	history of 35 producing wells86
Figure 5.34.	Partitioning the Egyptian oilfield wells into four groups based on its
	distance from the source87
Figure 5.35.	The run results of the first group of wells located within 500m radius88
Figure 5.36.	The run results of the second group of wells located between 500 and 1000
	m radius89
Figure 5.37.	The run results of the third group of wells located between 1000 and 1500
	m radius90
Figure 5.38.	The run results of the fourth group of wells located between 1500 and
	2000 m radius91
Figure 5.39.	The run results of the entire 35 active producing wells
	The incremental oil recovery versus distance from the wave source93
Figure 5.41.	The wave power distribution in the reservoir around the wave source in
	case of using a wave frequency of 100 Hz95
Figure 5.42.	The wave power distribution in the reservoir around the wave source in
	case of using a wave frequency of 1000 Hz95
Figure 5.43.	The wave power distribution in the reservoir around the wave source in
	case of using a wave frequency of 10,000 Hz96
Figure 5.44.	The average reservoir temperature versus time in case of using a wave
T' ~ 4.5	Power of 50 watt/m ²
Figure 5.45.	The average reservoir temperature versus time in case of using a wave Power of 100 watt/m ²
F: 5 46	
Figure 5.46.	The average reservoir temperature versus time in case of using a wave
Figure 5 47	Power of 500 watt/m ²
rigule 3.47.	application in case of the well at distance 500 m from the wave source.100
Figure 5.48	The cumulative oil recovery factor versus time with and without wave
11guie 3.46.	application in case of the well at distance 1000 m from the wave source
	• •
Figure 5.40	The cumulative oil recovery factor versus time with and without wave
1 1guic 3.49.	application in case of the well at distance 1500 m from the wave source
Figure 5.50	The cumulative oil recovery factor versus time with and without wave
1 15010 5.50.	application in case of using a reservoir porosity of 10%

Figure 5.51.	The cumulative oil recovery factor versus time with and without wave
_	application in case of using a reservoir porosity of 20%
Figure 5.52.	The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir porosity of 30%
Figure 5. 53	. The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir permeability of 1 md105
Figure 5.54.	The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir permeability of 10 md106
Figure 5.55.	The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir permeability of 100 md106
Figure 5.56.	Oil production rate with and without wave application versus time in case
	of using a reservoir oil density of 800 Kg/m ³ 108
Figure 5.57.	Oil production rate with and without wave application versus time in case
	of using a reservoir oil density of 900 Kg/m ³ 108
Figure 5.58.	Oil production rate with and without wave application versus time in case
	of using a reservoir oil density of 1000 Kg/m ³ 109
Figure 5.59.	The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir initial temperature of 30 °C110
Figure 5.60.	The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir initial temperature of 40 °C111
Figure 5.61.	The cumulative oil recovery factor versus time with and without wave
	application in case of using a reservoir initial temperature of 50 °C111
Figure 5.62.	The wave power distribution in the reservoir around the wave source in
	case of using water as a wellbore fluid
Figure 5.63.	The wave power distribution in the reservoir around the wave source in
	case of using normal weight drilling mud as a wellbore fluid114
Figure 5.64.	The wave power distribution in the reservoir around the wave source in
	case of using heavy weight drilling mud as a wellbore fluid115
Figure 5.65.	Temperature profile versus distance from the wave source at different time
	steps while reservoir is thermally isolated
Figure 5.66.	Temperature profile versus distance from the wave source at different time
	steps while reservoir is not thermally isolated119