



# **Enhancement of the Differential Relay Performance on Two Parallel Transformers Connected to the Unified Grid**

By

## **Ahmed Maged Ismail Hassan**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Electrical Power and Machines Engineering

# **Enhancement of the Differential Relay Performance on Two Parallel Transformers Connected to the Unified Grid**

## By Ahmed Maged Ismail Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

### **Electrical Power and Machines Engineering**

Under the Supervision of

### Prof. Dr. Hany Amin Elghazaly Ass. Prof. Dr. Ahmed Mohamed Emam

Professor of High Voltage Engineering

Ass. professor of High Voltage Engineering

Electrical power and machines Department Electrical power and machines Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

# **Enhancement of The Differential Relay Performance on Two Parallel Transformers Connected to The Unified Grid**

### By

### **Ahmed Maged Ismail Hassan**

A Thesis Submitted to the Faculty of Engineering at Cairo University

In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

# In Electrical Power and Machines Engineering

Approved by the Examining Committee

#### **Prof. Dr. Hany Mohamed Amin Elghazaly**

**Thesis Main Advisor** 

Professor of High Voltage Engineering Electrical Power and Machines Department Faculty of Engineering, Cairo University

#### Ass. Prof. Dr. Ahmed Mohamed Emam Abdo

Advisor

Associate Professor of High Voltage Engineering Electrical Power and Machines Department Faculty of Engineering, Cairo University

#### Prof. Dr. Ahdab M. Kamel El-Morshedy

**Internal Examiner** 

Professor of High Voltage Engineering Electrical Power and Machines Department Faculty of Engineering, Cairo University

#### Prof. Dr. Mousa Awad-Allah Abd-Allah

**External Examiner** 

Professor of High Voltage Engineering Electrical Power and Machines Department Faculty of Engineering, Shoubra, Banha University.

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

**Engineer's Name:** Ahmed Maged Ismail Hassan

**Date of Birth:** 27/ 09 / 1986 **Nationality:** Egyptian

E-mail <a href="mailto:eng\_ahmedmaged@yahoo.com">eng\_ahmedmaged@yahoo.com</a>

Phone:01002080126Address:Giza, EgyptRegistration Date:01 / 10 / 2012Awarding Date:/ 2020Degree:Master of Science

**Department:** Electrical Power and Machines Engineering

**Supervisors:** 

Prof. Dr. Hany Mohamed Amin Elghazaly Associate Prof. Dr. Ahmed Mohamed Emam

**Examiners:** 

Prof. Dr. Hany Mohamed Amin Elghazaly (Thesis main advisor)

Ass. Prof. Dr. Ahmed Mohamed Emam Abdo (Advisor)

Prof. Dr. Ahdab M. Kamel El-Morshedy (Internal Examiner)
Prof. Dr. Mousa Awad-Allah Abd-Allah (External Examiner)

Professor of High Voltage Engineering Electrical Engineering Department

Faculty of Engineering, Shoubra, Banha University

**Title of Thesis:** Enhancement of The Differential Relay Performance on Two Parallel Transformers Connected to The Unified Grid

**Key words:** Differential protection, power transformers, zero sequence current, sympathetic inrush.

**Summary:** Power Grid is growing larger and larger. Power transformer is one of the main components in power grid that has new types of faults and problems that was rarely discussed before. This thesis is concerned about enhancing the behavior of the differential protection relays on power transformers to correctly deal with such relatively new faults and maintain selectivity of protection system against two types of faults. The first case is zero sequence current affecting power transformers in case of external fault occurrence. The second case is sympathetic inrush between two parallel transformers during energization of one of them.



## **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

| Name:      | Date: | / | /2020 |
|------------|-------|---|-------|
| Signature: |       |   |       |

## Acknowledgments

Many thanks to Allah for health, happiness, and the ability to gain more and more information in science and practical life. With the support of my teachers and doctors and their sincere encouragement to become always in a better place carrying the light of knowledge and science to illuminate the darkness.

Many thanks to my colleagues and managers for providing real values and practical information to help in this thesis.

Also many thanks also to my family father, mother, sisters and son for great support to finish this thesis. By providing me with time and enthusiasm to complete and gain more and more.

# **Table of Contents**

|                                                               | Page |
|---------------------------------------------------------------|------|
| ACKNOWLEDGMENTS.                                              | I    |
| TABLE OF CONTENTS                                             | II   |
| LIST OF TABLES.                                               |      |
| LIST OF FIGURES.                                              |      |
| LIST OF ABBREVIATIONS AND SYMBOLS.                            |      |
| ABSTRACT                                                      |      |
| CHAPTER 1: INTRODUCTION                                       |      |
| 1.1. General                                                  |      |
| 1.2. Mal-operation of Protection Applied on Power Transformer |      |
| 1.3. Thesis Objective                                         |      |
| 1.4. Thesis Outlines                                          |      |
| CHAPTER 2: INTRODUCTION TO POWER TRANSFORM                    |      |
| PROTECTION                                                    |      |
| 2.1. General                                                  |      |
| 2.2. Types of Protection on Power Transformer                 |      |
| 2.2.1 Mechanical Protection.                                  |      |
| 2.2.1.1 Sudden Pressure Relays                                |      |
| 2.2.1.2 Oil and Winding Temperature Protection                | 3    |
| 2.2.1.3 Buchloz Relay(BR)                                     | 5    |
| 2.2.2 Electrical Protection                                   |      |
| 2.2.2.1 Differential Protection.                              |      |
| 2.2.2.1.1 Introduction to Differential Protection             |      |
| 2.2.2.1.2 Differential Protection Techniques                  |      |
| 2.2.2.2 Overcurrent Protection.                               |      |
| 2.2.2.3 Earth Fault Protection.                               |      |
| 2.2.2.4 Over-Flux Protection                                  |      |
| CHAPTER 3: DIFFERENTIAL PROTECTION FAILU                      | URE  |
| AGAINST ZERO SEQUENCE CURRENT AND SYMPATHE                    | ETIC |
| INRUSH                                                        |      |
| CURRENT                                                       | 20   |
|                                                               |      |
| 3.1 Introduction to Differential Current                      | 20   |

| 3.1           | 1.1 Steady State Differential Current                              | 20  |
|---------------|--------------------------------------------------------------------|-----|
| 3.1           | 1.2 Proportional Differential Current                              | 20  |
|               | 1.3 Transient Differential Current                                 |     |
|               | ro Sequence Current(ZSC) Affecting Power Transformer               |     |
|               | 2.1 Introduction to Symmetrical Components                         |     |
|               | 2.2 Sources of Zero Sequence Current in Power Networks             |     |
| 2.2           | sources of Zero Sequence Current in 1 o wer 1 term office          | >   |
| 3.2           | 2.3 Methods of Elimination of Zero Sequence Current                | 30  |
|               | 3.2.3.1 Using Power Transformers with only Two Windings            |     |
|               | 3.2.3.2 Equipping the Differential Protection Function to Detect Z |     |
| 2.2.5         | 3.2.3.3 Pre-equipped Protection Devices.                           | 32  |
|               | ympathetic Inrush Current (SIC) Affecting to Parallel              |     |
| Transf        | former                                                             | 33  |
|               | 3.1 Introduction to Inrush Current                                 |     |
| 3.            | 3.2 Factors Affecting Inrush Current Values                        |     |
|               | 3.3.2.1 Starting phase angle of voltage                            |     |
|               | 3.3.2.2 Residual Flux in Core.                                     |     |
|               | 3.3.2.3 Core Material                                              |     |
|               | 3.3.2.4 Supply or Source Resistance                                |     |
|               | 3.3.3 Effect of inrush current on power system network             |     |
|               | 3.3.3.1 Mechanical Stress Applied on Transformer Winding.          |     |
|               | 3.3.3.2 High Starting Current                                      |     |
|               | 3.3.3.3 Voltage Distortion(Harmonics)                              |     |
|               | 3.3.4 Types of inrush current                                      |     |
|               | 3.3.4.1 Energization Inrush Current                                |     |
|               | 3.3.4.2 Recovery Inrush Current                                    | 39  |
|               | 3.3.4.3 Sympathetic Inrush Current(SIC)                            | 39  |
|               | 3.3.5 Reasons of Sympathetic Inrush                                |     |
|               | 3.3.6 Methods of Elimination of Sympathetic Inrush Current         |     |
|               | 3.3.6.1 Information Exchange Between Transformers                  |     |
|               | 3.3.6.2 Point on Wave Switching Technique(POW)                     |     |
|               | R 4: MODELING AND IMPLEMENTATION OF ZI                             | 1KO |
| SEQUEN        | CE CURRENT AND SYMPATHETIC INRUSH                                  |     |
| <b>CURREN</b> | T AFFECTING TWO PARALLEL                                           |     |
| TRANSFO       | ORMERS                                                             | 42  |
| 4.1           |                                                                    |     |
| 4.2           | Modeling Of ZSC Affecting Two Parallel Power                       |     |
| •             | Transformers.                                                      | 42  |
| 4.3           | Modeling Of SIC Affecting Two Parallel Power                       |     |
|               | Transformers.                                                      | 47  |
|               |                                                                    |     |

| CHAPTE     | R 5: PARAMETERS AFFECTING ZERO SEQUENCE                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------|
| CURREN     | IT AND SYMPATHETIC INRUSH CURRENT                                                                                 |
| AFFECT     | ING TWO PARALLEL TRANSFORMERS52                                                                                   |
| 5.1        | Simulation of ZSC Model in Case of a Single Phase to Ground                                                       |
|            | t Occurs52                                                                                                        |
| 5          | .1.1 Parameters Affecting Zero Sequence Current In Power                                                          |
| Tra        | insformer54                                                                                                       |
| 5.1        | .1.1 Effect of fault resistance(R <sub>fault</sub> )54                                                            |
|            | .1.2 Effect of Transmission Line Fault Location                                                                   |
|            | .1.3 Effect of Loading Power                                                                                      |
| 5.1        | .1.4 Effect of Type of Neutral Grounding of High Voltage Side of the Transformer                                  |
| 5.1        | .1.5 Effect of Neutral Grounding Type of Low Voltage Side of the                                                  |
| <b>5</b> 1 | Transformer                                                                                                       |
|            | .1.6 Effect of Type of neutral Grounding for the Feeding Network61 .1.7 Effect of Type of Load Neutral Grounding  |
|            | 1.7 Effect of Type of Load Neutral Glounding                                                                      |
|            | .1.9 Effect of Substation Connection                                                                              |
| cu         | adding the parameters affecting the sympathetic inrush arrent(SIC)                                                |
| 5.2.1      | Effect of Source Strength65                                                                                       |
| 5.2.2      | Effect of Switching angle66                                                                                       |
| 5.2.3      | Effect of Residual Flux density67                                                                                 |
| 5.2.4      | Effect of Loading conditions                                                                                      |
| 5.2.5      | Effect of load power                                                                                              |
| 5.2.6      | Effect of load type(power factor variation)                                                                       |
| SYSTEM     | R 6: SUGGESTIONS TO OVERCOME PROTECTION MAL-OPERATION IN CASE OF ZERO SEQUENCE T AND SYMPATHETIC INRUSH CURRENT71 |
| 6.1        | Introduction                                                                                                      |
| 6.2        | Methods of Overcoming ZSC Effects on Protection                                                                   |
| Sy         | vstem71                                                                                                           |

|                       | 6.2.1 The First Case                                                                                                                                                                                       | 74         |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                       | 6.2.2 The Second Case                                                                                                                                                                                      | 76         |
|                       | 6.2.3 The Third Case.                                                                                                                                                                                      | 89         |
| 6.3<br>6.3.1 I<br>6.4 | Suggestions to overcome SIC effect on power network Detection and Elimination of SIC in the Digital Protection Device Suggestions to overcome Dual Fault (Sympathetic Incurrent and Zero Sequence Current) | e93<br>ush |
| CHA                   | PTER 7: CONCLUSION AND FUTURE WOR                                                                                                                                                                          | K111       |
| 7.1 Co                | onclusion                                                                                                                                                                                                  | 111        |
| 7.2 Fu                | iture work                                                                                                                                                                                                 | 111        |
| Refere                | ences                                                                                                                                                                                                      | 112        |

# **List of Tables**

|                                                                                 | page |
|---------------------------------------------------------------------------------|------|
| Table 2.1 : Inverse-time characteristics according to IEC60255                  | 13   |
| Table 4.1: parameters of Transmission line                                      | 45   |
| Table 5.1: Effect of R <sub>fault</sub> on ZSC values.                          | 56   |
| Table 5.2: Effect of fault location on ZSC values.                              | 57   |
| Table 5.3: Effect of load power on ZSC values                                   | 59   |
| Table 5.4: Values of active and reactive power according to power factor values | 64   |
| Table 5.5. Values of active and reactive power according to power factor        | 70   |

# **List of Figures**

|                                                                                    | Page |
|------------------------------------------------------------------------------------|------|
| Figure 2.1: Power transformer temperature sensor                                   | 5    |
| Figure 2.2: Analog temperature gauges                                              | 5    |
| Figure 2.3: Buchloz Relay for main transformer tank                                | 6    |
| Figure 2.4: Differential protection connection on power transformer                | 8    |
| Figure 2.5: High impedance differential relay scheme for 7 feeders protection      | 9    |
| Figure 2.6: example of single slope percentage restrained differential             | 9    |
| Figure 2.7: Instantaneous overcurrent characteristics                              | 10   |
| Figure 2.8: Definite time protection characteristics.                              | 11   |
| Figure 2.9: characteristics of inverse current protection according to IEC 60255 w | here |
| Is is the relay setting                                                            | 13   |
| Figure 2.10: Zero sequence method of detecting ground fault                        | 15   |
| Figure 2.11: Source ground current method for detecting ground faults              | 16   |
| Figure 2.12: Earth fault relay connected to power transformer neutral point        | 16   |
| Figure 2.13: Restricted earth fault on power transformer.                          | 17   |
| Figure 3.1: Value of Steady State Differential Current                             | 20   |
| Figure 3.2: Equivalent Circuit of Current Transformer                              | 22   |
| Figure 3.3: Excitation curve of CT                                                 | 23   |
| Figure 3.4: Simple RL network as a model for CT saturation                         | 24   |
| Figure 3.5: Secondary current in case of saturation due to dc offset               | 24   |
| Figure 3.6: Saturation due to high AC component                                    | 25   |
| Figure 3.7: Secondary waveform with 75% remnant flux                               | 26   |
| Figure 3.8: Phase sequence types                                                   | 28   |
| Figure 3.9: Zero sequence networks                                                 | 29   |
| Figure 3.10: Zero sequence network in case of two winding transformer used         | 31   |
| Figure 3.11: CT connection as delta to eliminate ZSC from differential relay       | 32   |
| Figure 3.12 Effect of residual current on inrush current values                    | 35   |
| Figure 3.13 Formation of magnetic field in nonmagnetic material                    | 36   |

| Figure 3.14 Relation between field intensity and magnetization of material          | 36     |
|-------------------------------------------------------------------------------------|--------|
| Figure 3.15 B-H curves of various material. 1)steel steel, 2) silicon steel, 3)     |        |
| cast steel, 4) tungsten steel, 5) magnet steel, 6) cast iron, 7) nickel, 8) cobalt, | 9)     |
| Magnetite                                                                           | 37     |
| Figure 3.16: Values of Inrush Current with the Four Values of Source Resistance     | 37     |
| Figure 4.1: SLD of Two Parallel Transformers Located at Elgammal Substation         | 42     |
| Figure 4.2: Matlab Model For Two Parallel Transformers Located at Elgammal          |        |
| Substation                                                                          | 43     |
| Figure 4.3: Zero Sequence Network in Normal Condition                               | 45     |
| Figure 4.4: Zero Sequence Network in Case of Single Line to Ground Fault            | 45     |
| Figure 4.5: Simulation Currents in Normal Condition                                 | 46     |
| Figure 4.6: Simulation Of ZSC in Case of Fault Occurs at 0.1 Second                 | 47     |
| Figure 4.7: Matlab Simulink Model for SIC                                           | 48     |
| Figure 4.8: SLD for SIC in Elgammal Substation                                      | 48     |
| Figure 4.9: Simulation of Current in Case of No SIC Detected(Neglecting Transform   | ner    |
| Saturation)                                                                         | 49     |
| Figure 4.10: Simulation of SIC During Connecting CB3 at 0.04 Seconds                | 49     |
| Figure 4.11: DC Current Components on Transformers 1 And 2 (Magnitude and           |        |
| Polarity)During Energization of Transformer 2                                       | 50     |
| Figure 4.12: Differential Current Affecting Transformer one During Energization of  | ?      |
| Transformer Two                                                                     | 51     |
| Figure 5.1: ZSC at BB1, BB2 and BB3                                                 | 52     |
| Figure 5.2: DC Current Components at BB1, BB2 and BB3                               | 53     |
| Figure 5.3: Effect of DC Component on Symmetrical Transformer Current               | 53     |
| Figure 5.4: Effect of Rfault on ZSC                                                 | 54     |
| Figure 5.5 Relation between Rfault and ZSC Peak and Steady State Values             | 55     |
| Figure 5.6: Effect of Fault Location on ZSC                                         | 56     |
| Figure 5.7: Variation of ZSC with Fault Location During Single Line to Ground Fau   | ılt on |
| the Feeding T. L.                                                                   | 57     |
| Figure 5.8: Effect of Load Power on ZSC Values                                      | 57     |
| Figure 5.9: Relation Between Load Power and ZSC Peak and Steady State Values        | 58     |

| Figure 5.10: Effect of Grounding HVS with 10 ohm Resistance on Zero Sequence           |
|----------------------------------------------------------------------------------------|
| Current59                                                                              |
| Figure 5.11 : Zero Sequence Network in Case of Isolated Neutral Grounding of           |
| HVS of the transformer                                                                 |
| Figure 5.12a: Effect of Different types of Grounding LVS keeping HVS with Solidly      |
| Grounded                                                                               |
| Figure 5.12b: Effect of Different types of Grounding LVS with isolated neutral of      |
| HVS61                                                                                  |
| Figure 5.13 : ZSC Values When the Neutral of the Feeding Network is Isolated61         |
| Figure 5.14: ZSC values when the neutral of the Feeding Network is Earthed through     |
| Resistance                                                                             |
| Figure 5.15: Effect of Load Neutral Grounding Type on ZSC                              |
| Figure 5.16: Effect of Loading Power Factor on ZSC                                     |
| Figure 5.17: ZSC in case of connecting two parallel transformers in service and single |
| transformer65                                                                          |
| Figure 5.18: Effect of Source Strength on Sympathetic Inrush Values for phase          |
| R only66                                                                               |
| Figure 5.19: Effect of Switching Angle on SIC Represented on DC Component values67     |
| Figure 5.20: DC Component with Neglecting Initial Flux                                 |
| Figure 5.21: DC Component with Considering Initial Flux                                |
| Figure 5.22: Effect of Loading Power on SIC                                            |
| Figure 5.23: Effect of Power Factor on SIC                                             |
| Figure 6.1: Flow Chart of Proposed Digital Relay Used to Eliminate ZSC Effect73        |
| Figure 6.2: Results of Healthy Case Applied on proposed scheme with Load 5 MVA74       |
| Figure 6.3: Results of Healthy Case Applied on Proposed Scheme with Load 50MVA75       |
| Figure 6.4: Proposed Scheme Results in Case of SLG Fault at Distance 1km from          |
| Substation                                                                             |
| Figure 6.5: Proposed Scheme Results in case of SLG Fault at Distance 15km from         |
| substation                                                                             |
| Figure 6.6: Proposed Scheme Results in Case of SLG Fault at Distance 24Km from         |
| Substation 81                                                                          |

| Figure 6.7: Proposed Scheme Results in Case of DLG Fault with Distance 5Km83           |
|----------------------------------------------------------------------------------------|
| Figure 6.8: Proposed Scheme Results In Case Of SLG Fault With Fault Resistance         |
| 1 Ohm84                                                                                |
| Figure 6.9: Proposed Scheme Results in Case of SLG Fault with Fault Resistance 5       |
| Ohm85                                                                                  |
| Figure 6.10: Proposed Scheme Results in Case of SLG Fault with Fault Resistance        |
| 11 Ohm86                                                                               |
| Figure 6.11: Proposed Scheme Results in Case of SLG Fault with Fault                   |
| Resistance 50 Ohm87                                                                    |
| Figure 6.12: Proposed Scheme Results in Case of SLG Fault with Fault Resistance        |
| 100 ohm88                                                                              |
| Figure 6.13: Results of Proposed Scheme Action in case of Internal Fault Exists on     |
| Phase C at HVS90                                                                       |
| Figure 6.14: Results of Proposed Action in Case of Internal Fault Exists on Phase C at |
| LVS91                                                                                  |
| Figure 6.15: Flow Chart of Proposed Digital Relay Used to Eliminate SIC effect94       |
| Figure 6.16: Results of Healthy (Neglecting Sympathetic Interaction)95                 |
| Figure 6.17: Results of SIC Case and False Tripping by Protection Relay96              |
| Figure 6.18: Proposed Scheme Results in Case of SIC Applied on Proposed Scheme97       |
| Figure 6.19 : Proposed scheme Results in case of SIC with Load Power 70MVA             |
| (interval=10msec)98                                                                    |
| Figure 6.20: Proposed Scheme Results in Case of SIC with 5MVA Load                     |
| Power(interval=20msec)99                                                               |
| Figure 6.21: Proposed Scheme Results in Case of Changing Switching Angle for           |
| Maximum SIC on phase B                                                                 |
| Figure 6.22: Proposed Scheme Results in Case of Changing Switching Angle for           |
| Maximum SIC on Phase C101                                                              |
| Figure 6.23: Matlab Simulink Model for Combined ZSC and SIC fault                      |
| Figure 6.24: Flow Chart of Proposed Scheme for Digital Protection Relay103             |
| Figure 6.25: Proposed Scheme Results in Healthy Case                                   |
| Figure 6.26: Proposed Scheme Results in case of ZSC Detected                           |