

In vitro differentiation of mouse stem cells into insulin-secreting cells for diabetes therapy

A thesis submitted for the degree of Ph.D. of science in zoology (Embryology)

By

Yasmine Hosny Hassan Abd El-Kader

M. Sc. in Zoology (Embryology 2013)

Supervisors

Late Prof. Dr. Fawzy Ibrahim Amer

Professor of Vertebrates and Embryology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Hamza Ahmed El Shabaka

Professor of Vertebrates and Embryology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Ali Mohamed Ali Abd El- Aal

Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Ashraf Abdel Halim El-Sayed

Professor of Physiology, Faculty of Agriculture, Cairo University

> Faculty of Science Ain Shams University 2019

Acknowledgements

Foremost, I would like to express my love and gratitude to my late supervisor Prof. Dr. Fawzy Amer may God blesses his soul.

I would like to express my sincere gratitude to my advisor Prof. Dr. Hamza El-shabaka for the continuous support of my Ph.D. study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor like him.

I am very thankful to Prof. Dr. Ali Abd El-Aal whose valuable guidance, suggestions and very constructive criticism have contributed immensely throughout my thesis.

Furthermore I would like to thank Prof. Dr. Ashraf El-Sayed for providing the technical facilities throughout my thesis.

Special thanks go to my precious friends Dr. Amr Bayoumy, Dr. Mahmoud Moustafa and Dr. Mohamed Khalifa for their continuous support and the keen interest shown to complete this thesis successfully. I'm extremely grateful to my parents for their love, deep concern, prayers and sacrifices for educating and preparing me for my future and for supporting me spiritually throughout my life.

At last but not the least, I am thankful to all my friends who have been always helping and encouraging me throughout my life. I have no valuable words to express my thanks, but my heart is still full of the favors received from every person.

List of Contents	Page
LIST OF ABBREVIATIONS	I
LIST OF FIGURES	V
LIST OF TABLES	XVII
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	8
MATERIALS AND METHODS	37
RESULTS	58
• Mesenchymal stem cells	58
• Histological and ultrastructural studies	68
1- The Pancreas	68
2- The Liver	93
• Physiological studies	135
DISSCUSION	162
SUMMARY AND CONCLUSIONS	182
REFERENCES	186

LIST OF ABBREVIATIONS

AC	Acinus
ADMSCs	Adipose mesenchymal stem cells
BV	Blood vessel
CAT	Catalase
CD	Cluster of differentiation
CV	Central vein
DC	Dark cell
DM	Diabetes mellitus
DMEM	Dulbecco's modified eagle media
DTZ	Dithizone
EDTA	Ethylenediaminetetraacetic acid
EN	Endothelial cell
ESCs	Embryonic stem cells

ı

FBS	Fetal bovine serum
GA	Golgi apparatus
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
Glut-4	Glucose transporter-4
GSH	Glutathione
Н	Hepatocyte
H-DMEM	High glucose Dulbecco's modified eagle media
HFMSCs	Human fetal mesenchymal stem cells
HPSCs	Human pluripotent stem cells
HX-E	Hematoxylin-Eosin
IDDM	Insulin dependent diabetes mellitus
IL	Islet of Langerhans
IPCs	Insulin producing cells
IPSCs	Induced pluripotent stem cells
KC	Kupffer cell

LC	Light cell
LD	Lipid droplet
L-DMEM	Low glucose Dulbecco's modified eagle media
Ly	Lysosome
M	Mitochondrion
MEFs	Mouse embryonic fibroblasts
MDA	Malondialdehyde
MSC	Mesenchymal stem cell
MTC	Masson's Trichrome
N	Nucleus
NIDDM	Non-insulin dependent diabetes mellitus
OD	Optical density
PAS	periodic acid-Schiff
PAX-4	Paired box gene 4
PBS	Phosphate buffer saline
PDX-1	Pancreatic and duodenal homeobox 1

RER	Rough endoplasmic reticulum
SER	Smooth endoplasmic reticulum
SC	Sinusoidal capillary
SG	Secretory granule
SOD	Super oxide dismutase
STZ	Streptozotocin
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TEM	Transmission electron microscope
V	Vacuole
WJMSCs	Wharton's jelly mesenchymal stem cells

LIST OF FIGURES

Figure No.	Title	Page
Fig.1	Mechanism of insulin action	15
Fig.2	the structure of the insulin receptor	15
Fig.3	Photomicrograph of spindle-shaped mesenchymal stem cells and rounded hematopoietic cells 3 days after culture in L-DMEM.	59
Fig.4	Photomicrograph of homogeneous spindle-shaped mesenchymal stem cells after 8 days of culture showing bi- and tri-angled fibroblast-like cells.	59
Fig.5	Histogram showing the expression of surface markers specific to the mesenchymal stem cells.	60
Fig.6	Flow cytometric analysis representing the relative cell number and fluorescence intensity, with unstained control cells and cells stained with antibodies against the surface proteins.	61
Fig.7	Electron micrograph of spindle-shaped undifferentiated mesenchymal stem cells with a large nucleus and numerous cytoplasmic processes.	63
Fig.8	Electron micrograph of an enlarged portion of undifferentiated mesenchymal stem cells showing rough endoplasmic reticulum, elongated mitochondria and a few lysosomes.	63
Fig.9	Photomicrograph of mesenchymal stem cells after a week of differentiation in media containing 10 mmol/L nicotinamide, 1 mmol/L β -mercaptoethanol.	65
Fig.10	Photomicrograph of mesenchymal stem cells after five weeks of differentiation showing a large number of clusters.	65
Fig.11	Electron micrograph of differentiated mesenchymal stem cells showing a large number of secretory granules.	66
Fig.12	Electron micrograph of differentiated mesenchymal stem cells showing the insulin secretory granules each with a halo surrounding the granule.	66

Fig.13	Gene expression of Insulin-1, Insulin-2, Pdx-1	67
	and pax-4 in Insulin-producing cells shown in	
	RT-PCR.	
Fig.14	Photomicrograph of a section of the pancreas of	75
	control mice stained with hematoxylin-eosin	
	showing the exocrine and endocrine portions	
	(Islets of Langerhans).	
Fig.15	Photomicrograph of a section of the pancreas of	75
_	control mice stained with hematoxylin-eosin	
	showing an Islet of Langerhans and exocrine	
	acini.	
Fig.16	Photomicrograph of a section of the pancreas of	
_	control mice and immunostained using antibodies	76
	to insulin and counterstained with hematoxylin.	
	The presence of insulin is indicated by strong	
	cytoplasmic dark brown staining of β -cells	
	leaving the rest of the pancreatic tissue negative.	
Fig.17	Photomicrograph of a section of the pancreas of	
	control mice and immunostained using antibodies	76
	to insulin. The presence of insulin is indicated by	
	strong cytoplasmic dark brown staining of β -cells	
	leaving the rest of the pancreatic tissue negative.	
Fig.18	Electron micrograph of a section of the pancreas	
	of control mice showing the two types of	77
	pancreatic β -cells; dark and light cells.	
Fig.19	Electron micrograph of a section of the pancreas	
	of control mice showing the light cell. Note the	77
	large number of secretory granules and the rough	
	endoplasmic reticulum.	
Fig.20	Enlarged portion of Fig. 19 showing a large	
	number of secretory granules and the rough	78
	endoplasmic reticulum.	
Fig.21	Enlarged portion of Fig. 19 showing a large	
	number of secretory granules and abundant	78
	mitochondria.	
Fig.22	Electron micrograph of a section of the pancreas	79
	of control mice showing a dark cell with a large	
	number of secretory granules with prominent halo	
	and abundant mitochondria and Golgi apparatus.	
Fig.23	Enlarged portion of Fig. 22 showing a large	79
	number of secretory granules with a prominent	

	halo. Note the abundant mitochondria and Golgi	
	apparatus.	
Fig.24	Photomicrograph of a section of the pancreas of	80
	diabetic mice stained with hematoxylin-eosin	
	showing congestion of blood vessels and	
	destructed islets.	
Fig.25	Photomicrograph of a section of the pancreas of	80
	diabetic mice stained with hematoxylin-eosin	
	showing necrosis and vacuolation of cells of the	
	islet of Langerhans.	
Fig.26	Photomicrograph of a section of the pancreas of	81
	diabetic mice stained with hematoxylin-eosin	
	showing congestion of blood vessels and	
	infiltration of lymphocytes into the blood.	
Fig.27	Photomicrograph of a section of the pancreas of	
	diabetic mice immune-stained using antibodies to	82
	insulin showing reduced insulin immune-	
	reactivity represented by minimal dark brown	
	insulin staining.	
Fig.28	Photomicrograph of a section of the pancreas of	
	diabetic mice immune-stained using antibodies to	82
	insulin showing necrosis and vacuolation of cells	
	of the Islet of Langerhans with reduced insulin	
71.00	staining.	
Fig.29	Electron micrograph of a section of the pancreas	83
	of diabetic mice showing shrinkage of the two	
T: 20	types of pancreatic β -cells.	
Fig.30	Electron micrograph of the pancreas of diabetic	
	mice showing a light cell showing pyknotic	83
	nucleus, vacuoles in the cytoplasm and lack of the	
E: 21	secretory granules.	
Fig.31	Enlarged portion of Fig. 30 showing vacuoles in	
	the cytoplasm and mitochondria.	84
Fig.32	Enlarged portion of Fig. 30 showing	
	fragmentation of rough endoplasmic reticulum	84
	and vacuoles in the cytoplasm.	
Fig.33	Electron micrograph of the pancreas of diabetic	
	mice showing a dark cell with an indented	85
	nucleus, vacuoles in the cytoplasm and lack of the	
	secretory granules.	0.7
Fig.34	Electron micrograph of the pancreas of diabetic	85

	mice showing a dark cell lacks of organelles and granules.	
Fig.35	Photomicrograph of a section of the pancreas of diabetic mice treated with undifferentiated stem cells stained with hematoxylin-eosin showing the exocrine and endocrine portions. Note the congestion of blood vessels with infiltration of lymphocytes.	86
Fig.36	Photomicrograph of a section of the pancreas of diabetic mice treated with undifferentiated stem cells stained with hematoxylin-eosin showing an islet of Langerhans with several vacuoles.	86
Fig.37	Photomicrograph of a section of the pancreas of diabetic mice treated with undifferentiated stem cells immunostained using antibodies to insulin showing insulin immune-reactivity represented by dark brown insulin staining.	87
Fig.38	Photomicrograph of a section of the pancreas of diabetic mice treated with undifferentiated stem cells and immunostained using antibodies to insulin showing amelioration of insulin immunereactivity represented by moderate dark brown insulin staining.	87
Fig.39	Electron micrograph of a section of the pancreas of diabetic mice treated with undifferentiated stem cells showing a light cell with several secretory granules.	88
Fig.40	Enlarged portion of Fig. 39 showing the secretory granules and rough endoplasmic reticulum of the light cell.	88
Fig.41	Electron micrograph of a section of the pancreas of diabetic mice treated with undifferentiated stem cells showing a dark cell with normal secretory granules.	89
Fig.42	Enlarged portion of Fig. 41 showing the secretory granules of the dark cell.	89
Fig.43	Photomicrograph of a section of the pancreas of diabetic mice treated with insulin-producing cells stained with hematoxylin-eosin showing normal islet of Langerhans.	90
Fig.44	Photomicrograph of a section of the pancreas of	90

	diabetic mice treated with insulin-producing cells	
	and immunostained using antibodies to insulin	
	showing amelioration of insulin immune-	
	reactivity represented by intense dark brown	
E: 45	insulin staining.	0.1
Fig.45	Electron micrograph of a section of the pancreas	91
	of diabetic mice treated with insulin-producing	
	cells showing a normal light cell with numerous	
F: 46	secretory granules.	0.1
Fig.46	Electron micrograph of a section of the pancreas	91
	of diabetic mice treated with insulin-producing	
	cells showing the normal structure of rough	
	endoplasmic reticulum, mitochondria and	
	abundant secretory granules.	
Fig.47	Electron micrograph of a section of the pancreas	
	of diabetic mice treated with insulin-producing	92
	cells showing a normal dark cell.	
Fig.48	Electron micrograph of a section of the pancreas	
	of diabetic mice treated with insulin-producing	92
	cells showing healthy abundant secretory	
	granules, mitochondria and Golgi apparatus.	
Fig.49	Photomicrograph of a section of the liver of	
	control mice stained with hematoxylin-eosin	100
	showing the normal organization of liver	
	parenchyma.	
Fig.50	Photomicrograph of a section of the liver of	
	control mice stained with hematoxylin-eosin	100
	showing cords of hepatocytes separated by	
	sinusoidal capillaries.	
Fig.51	Photomicrograph of a section of the liver of	_
	control mice stained with hematoxylin-eosin	101
	showing a central vein surrounded by hepatic	
	strands.	
Fig.52	Photomicrograph of a section of the liver of	
	control mice stained with hematoxylin-eosin	101
	showing hepatocytes and blood sinusoids lined by	
	endothelial cells and macrophages.	
Fig.53	Photomicrograph of a section of the liver of	102
	control mice stained with periodic acid-Schiff	
	showing the normal organization of glycogen	
	granules within the hepatocytes.	
	1 "	