Evaluation of lumbar fusion in recurrent disc prolapse

Research proposal submitted by

Mohammed Hawary Elmor M.B.B.CH., MSc. Ain shams University

For partial fulfillment of MD degree in Neurological Surgery Under supervision of

Prof Dr. Salah Abd Elkhalek Hemida

Professor of Neurosurgery Ain Shams University

Prof Dr. Omar Yousef Hammad

Professor of Neurosurgery Ain Shams University

Prof Dr. Hazem Ahmad Mostafa

Professor of Neurosurgery Ain Shams University

Dr. Salah Mostafa Hamada

Assistant Professor of Neurosurgery Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgement

Firstly and utmost thank to ALLAH

for

accomplishment of this work

I wish to express my deepest gratitude to all those who assisted me to complete this work.

First and foremost, my thanks to Prof. Dr. Salah Abd Elkhalek Hemida, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his unlimited help and continuous insistence on perfection, without his constant supervision, this thesis could not have achieved its present form.

I am greatly indebted to **Prof. Dr. Omar Yousef Hammad**, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, forhis fruitful suggestions and wise guidance created this thesis, offering me All his endoscopic cases were performed and followed only by him. Great appreciation for his leadership.

Many thanks and appreciation to **Prof. Dr. Hazem Ahmad Mostafa,** Professor of Neurosurgery, Faculty of Medicine, Ain Shams
University, for his supervision and encouragement and for his kindness throughout the work.

I would like also to thank to **Dr. Salah Mostafa Hamada**, Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his encouragement and co-operation.

It is my pleasure to extend my obligation to all members of the staff of the Neurosurgery Department, also many thanks to all patients in this thesis.

LIST OF CONTENTS

Title		Page
I.	Introduction	1
II.	REVIEW OF LITERATURE	5
	1. General Principles of Spine Embryology	5
	2. Anatomy	10
	3. Pathology	18
	4. Biomechanics	30
	5. Radiographic evaluation	41
	6. History of spine surgery	48
	7. History of Spinal instrumentation	55
	8. History of minimally invasive techniques	65
III.	Aim of the work	76
IV.	Patients and methods	77
V.	Surgical procedure	88
V.	Results	109
VI.	Illustrated cases	156
VII.	Discussion	193
VIII.	Summary	224
IX.	Conclusion	226
Х.	References	227
XI.	Arabic summary	

LIST OF TABLES

Table		Page
(1)	Lumbar muscles	14
(2)	Modified Japanese orthopaedic association (JOA) scoring system	86
(3)	Demographic distribution of the three studied groups	109
(4)	Preop clinical presentation of the 3 studied groups	112
(5)	Past history of the 3 studied groups	114
(6)	Type of the previous surgery	116
(7)	Comparison between the three studied groups according to site	117
(8)	Preop duration of symptoms in the 3 studied groups	118
(9)	Pre-op straight leg raising the 3 studied groups	120
(10)	Pre-op weakness in the 3 studied groups	121
(11)	Pre-op sensory deficit of the 3 studied groups	123
(12)	Urinary incontinence, sexual dysfunction in the 3 studied groups	123
(13)	Pre op radiology of the 3 studied groups	125
(14)	Comparison between the studied groups according to time interval between 1ry and 2nd surgery	127
(15)	Comparison between the three studied groups according to VAS LBP and rad pain	128
(16)	Distribution of the studied cases according to wound size	130

Table		Page
(17)	Comparison between the three studied groups according to intraoperative event	131
(18)	Comparison between the three studied groups according to blood loss	133
(19)	Comparison between the three studied groups according to operative duration (min.)	134
(20)	Comparison between the three studied groups according to hospital stay days	137
(21)	Comparison between the three studied groups according to the use of drain	137
(22)	Comparison between the three studied groups according to post operative complications	139
(23)	Comparison between the three studied groups according to weakness POP motor deficit	140
(24)	Comparison between the three studied groups according to VAS LBP	142
(25)	Comparison between the three studied groups according to VAS RAD	144
(26)	Comparison between the three studied groups according to modified ODI score	146
(27)	Comparison between the three studied groups according to JOA	149
(28)	Comparison between the three studied groups in outcome according to modified MC NAB	150
(29)	Comparison between the three studied groups according to cost	152,153
(30)	Comparison between the three studied groups according to advantages and disadvantages	154

LIST OF FIGURES

Figure		Page
(1)	A. Cross section showing the developing regions of a somite. Sclerotome cells are dispersing to migrate around the neural tube and notochord to contribute to vertebral formation. B. Example of a typical vertebra showing its various components	5
(2)	Formation of the vertebral column	6
(3)	1) Roof plate. 2) Flor plate. 3) Sulcus limitans. 4) Alar plate. 5) Basal plate. 6) Intermediate horn. 7) Mantle layer. 8) Neuroepithelial layer. 9) Marginal layer	8
(4)	 Intermediate horn. 2) Dorsal sensory horn. 3) Ventral motor horn. 4) Dorsal sensory root. 5) Ventral motor root. Dorsal root ganglion. 7) Trunk of spinal nerve. 8) Central canal 	8
(5)	L2 vertebra (superior view)	10
(6)	Three zones of lateral canal	11
(7)	Intervertebral disc	13
(8)	Transverse slice at the lumbar level showing the anterior epidural venous plexuses	16
(9)	Schematic drawing of experimental nerve root compression model	20
(10)	Seven days after application of nucleus pulposus	23
(11)	Suggested area of innervation by one recurrent sinuvertebral nerve (nerve of Luschka)	25
(12)	Suggested mechanism of action for tumor necrosis factor (TNF)	27
(13)	Spinal motion segment planes and directions of motion	31

Figure		Page
(14)	Illustrates how shear (A), torsion (B), and tension (c) influence the fibers of the annulus	32
(15)	Sequence of event associated with cumulative or repeated trauma leading to disc degeneration	34
(16)	Global radiographic parameters	36
(17)	Regional spinal radiographic parameters	38
(18)	Pelvic incidence	39
(19)	Representative MR images	41
(20)	Normal postoperative T1-weighted images a before b after contrast enhancement	43
(21)	Modic type 1 changes	46
(22)	Modic type 2 changes	46
(23)	Modic type 3 changes	47
(24)	Timeline from the pre-Grego-Roman period through the Renaissace	48
(25)	The Edwin Smith papyrus	49
(26)	The opening decoration and invocation to Allah from a 16th century manuscript of Avicenna's Canon	51
(27)	Timeline from the Renaissace through the ¹⁹ th century	52
(28)	Boucher was the first to describe the placement of screws through the pedicle	56
(29)	Translaminar facet joint screws were first used by Magerl	57
(30)	Position of 2 luque rods in relation to laminae and spines. Pedicle scew is shown	58
(31)	VSP. Annimation from Depuy acromed	60
(32)	Dynesys device applied on a spinal model	61
(33)	The Cosmic posterior dynamic system	62

Figure		Page
(34)	The Isobar device	63
(35)	Total Facet Arthroplasty System	64
(36)	(A) Dynamic reference array (DRA) frameless stereotactic device; (B) Tracking system for three-dimensional (3D) stereotaxis can be comprised of an electro-optical or electromagnetic system	66
(37)	Cadaveric demonstration of the working triangle in the L5–S1 neural foramen	68
(38)	Tubular retractor system to remove a herniated disc	68
(39)	Laminectomy performed through an endoscope	70
(40)	NuVasive system from MIS TLIF	71
(41)	Cadaveric demonstration of the safe zone in the L3–4 neural foramen	71
(42)	Medtronic SEXTANT rod insertion system	72
(43)	O arm	74
(44)	The PediGuard	75
(45)	Visual analogue scale	86
(46)	Oswestry disability indext	87
(47)	Pedicle screw insertion.	93
(48)	Distraction of disc space	94
(49)	Discectomy and endplate preparation	95
(50)	Further disc space distraction	96
(51)	Placement of bone graft	96
(52)	Trial cages	97
(53)	Cage insertion	98
(54)	Final positioning	99
(55)	A standard operating room set-up	101

Figure		Page
(56)	Laminectomy by kerrison	105
(57)	Sex distribution between the 3 studied groups	110
(58)	Age distribution between the 3 studied groups	110
(59)	Work profile between the 3 studied groups	111
(60)	Smoking distribution between the 3 studied groups	111
(61)	Preop clinical presentation of the 3 studied groups	113
(62)	Preop radicular pain pattern of the 3 studied groups	113
(63)	Past history of the 3 studied groups	115
(64)	Trauma in the 3 studied groups	115
(65)	Type of the previous surgery	116
(66)	Different surgical recurrent level	117
(67)	Preop duration of low back pain in the 3 studied groups	119
(68)	Preop duration of radicular pain in the 3 studied groups	119
(69)	Pre-op Straight Leg Raising the 3 studied groups	120
(70)	Pre-op Weakness in the 3 studied groups	122
(71)	Pre-op muscle weakness grade of the three studied groups	122
(72)	Urinary incontinence, sexual dysfunction in the 3 studied groups	124
(73)	Pre op disc side of the 3 studied groups	126
(74)	Pre op Disc size +-foram. Stensis of the three studied groups	126
(75)	Comparison between the three studied groups according to time interval	127

Figure		Page
(76)	Comparison between the three studied groups according to VAS LBP	129
(77)	Comparison between the three studied groups according to VAS rad pain	129
(78)	Comparison between the three studied groups according to Intraoperative event	132
(79)	Comparison between the three studied groups according to Hospital Stay days	134
(80)	Comparison between the three studied groups according to Blood Loss (ml)	135
(81)	Comparison between the three studied groups according to OP Time (hrs)	135
(82)	Distribution of the studied cases according to wound size	136
(83)	Comparison between the three studied groups according to the use of the drain	138
(84)	Comparison between the three studied groups according to post operative complication	140
(85)	Comparison between the three studied groups according to weakness POP motor deficit	141
(86)	Comparison between the three studied groups according to VAS RAD	146
(87)	Comparison between the three studied groups according to modified ODI score	148
(88)	Distribution of studied sample according to modified MC NAB	152

LIST OF ABBREVIATION

RLDP Recurrent Lumbar Disc Prolapse

DM Diabetes Mellitus

HTN Hypertension

PLF Posterolateral Fusion

PLIF Posterior Lumbar Interbody Fusion

TLIF Transforaminal Lumbar Interbody Fusion

MRI Magnitic Resonanse Imaging

CT Computerized Tomography

PL X-Ray Plain X-Ray

LSS Lumbosacral Spine

L Lumbar Spine

Abstract

Background: Recurrent disc herniation is the most common cause of reoperation after the primary disc surgery, The management of recurrent disc herniation remains somewhat controversial. Surgical treatment for recurrent disk herniation can be broadly categorized as revision discectomy alone or revision discectomy and fusion or percutaneous endoscopic interlaminar discectomy.

Aim of the work: to evaluate and compare the therapeutic effect between different modalities of treatment of the recurrent lumbar disc protrusion (RLDP) through 3 groups: (1) First group treated by conventional discectomy. (2) Second group treated by discectomy and lumbar fusion either by PLF, PLIF or TLIF. (3) Third group treated by percutaneous endoscopic interlaminar discectomy.

Patients and methods: It is a prospective cohort study performed between January 2012 and April 2017 on 150 patients complained of recurrent lumbar disc herniation. They were surgically treated at the Department of Neurosurgery, Ain Shams University Hospitals. All patients are evaluated clinically by VAS, JOA and Oswestry disability index (ODI) through follow up period of 2 years (one month, 6 months, 1 yr, 2 yrs). They were divided into 3 groups (I&II and III) each group was a fifty patients

Results: the mean overall recovery rate is 89%, comparison between the three groups showed significant improvement of the endoscopic group and fixation group than simple discectomy group in term of VAS LBP, leg pain , JOA and ODI. Intraoperative blood loss, length of operation and hospital stay were significant less in endoscopic group than fixation and simple discectomy group

CONCLUSION: Recurrent lumbar disc prolapse management is a controversial issue, there are different surgical modalities (either by open discectomy, discectomy and fixation or Percutaneous interlaminar lumbar discectomy PEILD) although those surgical modalities are successful the PEILD is the optional choice that offers less tissue trauma, rapid recovery, less cost effect and early return to work

INTRODUCTION

The strict definition of recurrent disc herniation is the presence of herniated disc material at the same level, ipsi- or contralateral, in a patient who has experienced a pain-free interval of at least 6 months since surgery. The clinically more appropriate definition, however, is disc herniation at the previously operative site and side. The pain-free interval should not be restricted to the minimum of 6 months. It has been suggested that the mean interval for recurrent pain associated with recurrent herniated discs is 18 months, longer than that for de novo herniated discs or symptomatic epidural fibrosis. (**Erbayraktar et al., 2002**)

Mixter and Barr first discovered the link between sciatica and the lumbar disc herniation in 1934. Since then different surgical procedures for lumbar disc prolapse has been are in practice. Primary discectomy gives good results but re-operation carries higher rate of complications and psychological factors should be taken in lower rate of success. (**Mixter WJ, Barr**)

However, although relief of sciatica after operation is satisfactory, this procedure still suffers from some difficulties, especially recurrent sciatica, low back pain (LBP) and the problems of repeat surgery.

Although, various factors contribute to the failure of disc surgery, recurrent disc herniation remains the major source of disability. (Llmo et al., 2001)

Recurrent lumbar disc herniation (RLDH) is a major cause of surgical failure, the incidence of which is reported from 5 to 11%, with an increased incidence as the follow-up period is extended. (Cinotti et al., 1998)

Revision spinal surgery is more challenging than primary surgery, owing to the indistinct anatomical planes and perineural scarring. **Ebeling et al.**, (1989) reported a complication rate of 13% after repeated discectomy, and dural tears and infections were the most common problems. However, TLIF provides an approach through facetectomy to enter unscarred virgin tissue. Therefore, the surgeon can approach the target site safely without demanding dissection of the fibrotic scar tissues, and excessive retraction of scarred nerve root and dura, the potential risk of dural tear and nerve injury may also be decreased. (**Kim and Michelsen**, 1992; **Lehmann and La Rocca**, 1981)

The optimal technique for treating RLDH is controversial. Some authors believe that repeat discectomy is the treatment of choice, with similar clinical results compared to the primary procedure, (Cinotti et al., 1999; Papadopoulos et al., 2006) but approach-related complications can be considerable. Scar tissue