Evaluation of Anterior Alveolar Ridge Reconstruction with Allogenic Bone Plate and Autogenous Cortical Bone Chips: A Radiographic and Histological Clinical Study.

Thesis Submitted to the Faculty of Dentistry, Ain Shams University
In partial fulfillment of the requirement for Master Degree in Oral
and Maxillofacial Surgery

By

Khalid Tarek Mohammed Karkar Fahmy

B.D.S – Faculty of Dentistry

October 6 University - 2013

Faculty of Dentistry
Ain Shams University
2020

Supervisors

Prof.Dr. Salah Abdel Fattah Ahmed

Professor of Oral and Maxillofacial Surgery
Faculty of Dentistry
Ain Shams University

Dr. Karim Mohamed Abdel Mohsen

Lecturer of Oral and Maxillofacial Surgery,
Faculty of Dentistry
Ain Shams University

Faculty of Dentistry
Ain Shams University
2020

ACKNOWLEDGEMENT

First and foremost, to **ALLAH** for giving me the ability to achieve any work in my life.

My profound appreciation and gratitude to **my supervisors**, for their valuable advice, great suggestions and for their kind help to dress this work to its final form.

I would like to pay tribute to **Dr. Omar Mokhtar**, Assistant Lecturer of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ain Shams University for his effort in the presented clinical cases in this study.

I am also greatly thankful to **Dr. Waheed Eissa**, Lecturer of Oral and Maxillofacial Surgery, and **Dr. Shady Elsadek**, Assistant Lecturer of Oral and Maxillofacial Surgery, Faculty of Dentistry, October 6 University for their scientific cooperation, great efforts and encouragement. It gives me great pleasure to express my deepest thanks to **Dr. Yasmine Alaa El-Din**, Lecturer of Oral Pathology, Faculty of Dentistry, October 6 University for her scientific and continued help in the histological part of this study.

Finally, special thanks to **Dr. Amir Samir**, Master student of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ain Shams University for his continued help, encouragement and support.

DEDICATION

To my Father, you are always my backbone. Thank you for your continuous support in good and bad times.

To my Mother, you deserve more than words for giving me all the inspiration and motivation I need to reach what I am in.

To my second family in Oral and Maxillofacial Surgery Department at Faculty of Dentistry, October 6 University, for their constant encouragement, and believing in me and in my ability that I can.

List of Contents

Introduction	1
Review of literature	3
Aim of the study	35
Patients and Methods	36
Results	61
Discussion	77
Summary and Conclusion	87
Appendix	92
References	102
Arabic Summary	

List of Figures

Fig.1: Seibert classification of ridge deformities
Fig.2: Lekholm and Zarb bone quantity classification 6
Fig.3: Cawood and Howell classification for anterior maxilla region 7
Fig.4: Lekholm and Zarb bone quality classification
Fig.5: Preoperative clinical picture
Fig.6: Preoperative CBCT evaluation
Fig.7: Reflection of full thickness mucoperiosteal flap
Fig.8: Scoring of the periosteum
Fig.9: Bone scrapper package44
Fig.10: Harvesting autogenous bone chips from the canine eminence44
Fig.11: Harvesting autogenous bone chips from anterior nasal spine45
Fig.12: The harvested chips in the scrapper container45
Fig.13: The allograft plate in the sterile container46
Fig.14: Fixation of the allograft plate by microscrews46
Fig.15: Filling the gap by the autogenous chips47
Fig.16: Closure of the flap by prolene suturing material47

Fig.17: Clinical picture 3 months postoperatively54
Fig.18: Measurement standardization of preoperative CBCT55
Fig.19: Measurement standardization of postoperative CBCT56
Fig.20: Preoperative width measurements57
Fig.21: Postoperative width measurements57
Fig.22: Removal of the fixation screws
Fig.23: The trephine burr instead of the initial implant drill58
Fig.24: Bone core biopsy for histological examination59
Fig.25: Dental implant in place59
Fig.26: Photomicrograph showing specimen stained by H&E (x100)60
Fig.27: A) Pre-operative, B) Post-operative with final prosthetic restoration
Fig.28: Gender distribution
Fig.29: Preoperative CBCT showing width measurements of pt. Num.1
Fig.30: 6 months postoperative CBCT showing width measurements of pt. Num.165
Fig.31: Preoperative CBCT showing width measurements of pt. Num.2

Fig.32:	6 months postoperative CBCT showing width measurements of
	pt. Num.266
Fig.33:	Bar chart of mean and SD of apical bone width69
Fig.34:	Bar chart of mean and SD of mid-level bone width71
Fig.35:	Bar chart of mean and SD of crestal bone width74
Fig.36:	Line chart of mean of horizontal bone width at preoperative and 6 months postoperatively stages
Fig.37:	Photomicrograph showing normal bone formation, healthy osteocytes and osteoblast (H&E x200)
Fig.38:	Photomicrograph showing presence of osteoblast on the bone
	trabeculae periphery and lacunae of osteocytes (H&E x400)76

List of Tables

Table.1: Misch classification of bone quality11
Table.2: Showing apical bone width preoperative, 6 months post-operatively and the bone gain in mm
Table.3: Minimum, maximum, mean and SD of the apical measurements
Table.4: Statistically significance of the apical bone width difference at both stages
Table.5: Showing mid-level bone width preoperative, 6 months postoperatively and the bone gain in mm70
Table.6: Minimum, maximum, mean and SD of the mid-level measurements
Table.7: Statistically significance of the mid-level bone width difference at both stages
Table.8: Showing crestal bone width preoperative, 6 months postoperatively and the bone gain in mm
Table.9: Minimum, maximum, mean and SD of the crestal measurements
Table.10: Statistically significance of the crestal bone width difference at both stages73

Table.11: Visual Analog Scale for pain and edema assessment	.99
Table.12: Demographic data of the patients in the study	.00
Table.13: Showing the linear measurements of the alveolar bo	ne
width1	01

List of Abbreviations

	T
CBCT	Cone Beam Computed Tomography
HU	Hounsfield units
GBR	Guided Bone Regeneration
DO	Distraction Osteogenesis
MISR	Mean implant survival rate
MCR	Mean complication rate
PDGF	Platelet Derived Growth Factor
FGF	Fibroblast Growth Factor
IGF	Insulin-like Growth Factor
BMPs	Bone Morphogenetic Proteins
TGF- β	Transforming Growth Factor beta
ePTFE	expanded polytetrafluoroethylene
PTFE	polytetrafluoroethylene
FDBA	Freeze Dried Bone Allograft
DFDBA	Demineralized Freeze Dried Bone Allograft
DBMs	Demineralized Bone Matrices
HA	Hydroxyapatite
AOBG	Autogenous onlay bone grafting
ARS	Alveolar ridge splitting
M1	Measurement 1 at the apical level
M2	Measurement 2 at the mid-level
M3	Measurement 3 at the crestal level
VAS	Visual Analog Scale
EDTA	EthyleneDiamineTetraAcetic acid
H&E	Hematoxylin and Eosin stain
SD	Standard deviation
Num. (#)	Number

Introduction

Introduction

Successful implant surgery is depending on the achievement of successful osseointegration and the establishment of an ideal foundation for implant supported prosthetic restoration. The internal structure and the vitality of bone, which are described in terms of quality, are responsible for the successful osseointegration.

A relative contraindication for dental implant is the insufficient bone volume. There are minimum dimensions that the remaining alveolar ridge must possess for implants to be placed.

When the proper dimensions each with respect to the area the implant will be placed in are not present, it will be necessary to augment the size of the alveolar ridge prior to implant placement using various grafting techniques which is guided by a lot of criteria. Without grafting, the implants may have to be placed in anatomically unfavorable positions or may have adverse angulation.

These compromises can lead to unaesthetic restorations, mechanical failure and ultimately failure of the implant as described by Branemark that, the success of an osseointegrated implant where there is direct functional and structural connection between ordered living bone and surface of a load bearing implant. So both bone quantity and quality at the implant placement site are important and inseparable parameters in dental implant planning.

Various bone grafting materials are available for reconstruction of alveolar deficiencies which include autografts, allografts and xenografts. The success rate of grafted bone has been excellent to moderate depending on various conditions. There are numerous lateral alveolar reconstruction techniques and protocols to restore the alveolar ridge width such as graft particulate with guided bone regeneration membranes, onlay grafting, ridge splitting and alveolar distraction osteogensis. The choice between the different augmentation procedures is depending on the morphology of the defect.

The literature is full of different trials of combinations and modifications for these materials and techniques, in order to enhance the clinical outcome and patient satisfaction.