EFFECT OF BASIL LEAVES (Ocimum basilicum) AND OLIVE LEAVES (Olea europaea) EXTRACTS ON TOXICITY OF BIOPESTICIDE EMAMECTIN BENZOATE IN RATS

 $\mathbf{B}\mathbf{y}$

FATMA SAID SAFINA

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2000 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric. Cairo Univ., 2007

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Biochemistry

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2020

Format reviewer

Vice Dean of graduate studies

SUPERVISION SHEET

EFFECT OF BASIL LEAVES (Ocimum bacilicum) AND OLIVE LEAVES (Olea europaea) EXTRACTS ON TOXICITY OF BIOPESTICIDE EMAMECTIN BENZOATE IN RATS

Ph.D. Thesis
In
Agricultural Sci. (Biochemistry)

By

FATMA SAID SAFINA

B.Sc. Agric. Sci., Fac. Agric., Cairo Univ. (2000) M.Sc. Agric. Sci., Fac. Agric. Cairo Univ. (2007)

SUPERVISION COMMITTEE

Dr Ebtesam Abdel Moniem Mahmoud Professor of Biochemistry, Faculty of Agriculture, Cairo University.

Dr. Essam Abd El Raouf Ewies Professor of pesticides, Faculty of Agriculture, Cairo University.

Dr. Fatma Mohamed Hammam Head Researcher of pesticides, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Giza.

APPROVAL SHEET

EFFECT OF BASIL LEAVES (Ocimum basilicum) AND OLIVE LEAVES (Olea europaea) EXTRACTS ON TOXICITY OF THE BIOPESTICIDE EMAMECTIN BENZOATE ON RATS

Ph.D. Thesis

In

Agric. Sci. (Biochemistry) Fac. Agric. Cairo Univ.

By

Fatma Said Safina

B.Sc. Agric. Sci, Fac. Agric., Cairo Univ. (2000) M.Sc. Agric. Sci, Fac. Agric., Cairo Univ. (2007)

APPROVAL COMMITTEE

Dr. Sanaa Abd El Kader Mohamed
Head Research of pesticides - Central Laboratory of Residue Analysis of
Pesticides and Heavy Metals in Food - Agriculture Research Center.
Dr. Mohi El Deen Ali Osman
Professor of Biochemistry, Faculty of Agriculture, Cairo University.
Dr. Essam El Dien Abd El Raouf Ewies
Professor of Pesticides, Faculty of Agriculture, Cairo University.
Dr. Ebtesam Abd El Moniem Mahmoud
Professor of Riochemistry Faculty of Agriculture Cairo University

Date: 18 / 2 /2020

Name of Candidate: Fatma Said Safina Degree:Ph.D

Title of Thesis: Effect of basil leaves (Ocimum bacilicum) and olive leaves (Olea europaea) extracts on toxicity of biopesticide emamectin benzoate in rats

Supervisors: Dr. Ebtesam Abdel moniem Mahmoud

Dr. Essam Abd El Raouf Ewies Dr. Fatma Mohamed Hammam

Department: Agricultural Biochemistry **Approval**: / 2020

ABSTRACT

The present investigation is aimed to use the dried ethyl acetate extracts for *Ocimum* bacilicum (basil leaves) and Olea europaea (olive leaves) to reduce toxicity of Emamectin benzoate (Biopesticides). DPPH radical scavenging activity showed a significant inhibition at all extracts (ethyl acetate 98% > aqueous 90% > ethanol 77% > hexane 49%) in Ocimum basilicum compared to Olea europaea (ethyl acetate 91% > ethanol 83% > aqueous 70% > hexane 61.9%). The phytochemical active compounds of Olea europaea and Ocimum basilicum were qualitatively analyzed for leaves separately, triterpenes and steroids were presented in hexane extract in Ocimum basilicum and Olea europaea, lipids were presented in hexane extract of Ocimum basilicum and found in hexane and ethanol extracts of Olea europaea , tannins were present in ethanol and aqueous extracts of Ocimum basilicum and aqueous extract only of Olea europaea, carbohydrates and saponines were present in ethanol and aqueous extracts of Ocimum basilicum and Olea europaea, flavonoids were presented in ethyl acetate, ethanol and aqueous extracts, in (HPLC) showed that ethyl acetate was the best solvent for quantitative extraction of olive leaves phenolic and flavonoids while aqueous, ethanol and hexane were least effective. Hexane was particularly ineffective as an extractant for the basil leaves and aqueous > ethanol > ethyl acetate was the best solvent for quantitative extraction of basil leaves phenolic and flavonoids. Biochemical changes were estimated on rats after treatment of emamectin benzoate with different doses of ethyl acetate (OLE and BLE) for 28 days. The results showed that there was increase in AST and ALT activities, decrease in the total protein content, significant decrease in albumin content, significant increase in serum urea, creatinine, significant increase in serum cholesterol, triglyceride, LDL-C and significant decrease in liver SOD, CAT and GPx activities increase in liver MDA level for dose 1/40 LD₅₀ of EB (1.0 mg/kg) alone during the 14 and 28 days of the experiment period as comparing with control group during at the same period. There was decrease in ALT, AST activities, serum cholesterol, triglyceride, LDL-C, urea, creatinine content and an increase in albumin, T.P. content after 14 and 28 days also. An increase in liver SOD, CAT and GPx activities whereas decrease in liver MDA content after 28 days when rats administrated with emamectin benzoate 1.0 mg/kg treated with OLE and BLE (200 and 400 mg/kg).

Key words: DPPH, BLE, emamectin benzoate, *Ocimum bacilicum*, *Olea europaea*, OLE, T.P ABTS, toxicity, SOD, CAT, GPx, MDA, ALT, AST, Urea, creatinine, lipid profile, albumin,

ACKNOWLEDGEMENT

All appreciation's are for Allah, who enabled me to complete this work. I would like to express my sincere gratitude and wholehearted appreciation to Prof. Dr. Ebtesam Abdel moniem Mahmoud Professor Biochemistry Faculty of Agriculture, Cairo University for her supervision, constructive encouragement and valuable quidance. Sincere gratitude is due to Prof. Dr. Essam Abd El Raouf Ewies, Professor of Pesticides, Faculty of Cairo University. for Agriculture, supervision, his constructive encouragement and valuable guidance. I appreciate the great help, support, gratitude to my supervisor, Prof. Dr. fatma Mohamed hammam, Head Researcher of Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory for suggesting the point, supervision, valuable guidance, encouragement and continuous assistanc

Grateful appreciation is also extended to all staff members of the biochemistry Department, Faculty of Agriculture, Cairo University.

Special deep appreciation is given to my father, my mother, my husband, my sons, my brother and sisters. Also I feel deeply grateful to my dear country Egypt

LIST OF ABBREVIATION

4-HN: 4-hydroxy -2-nonenal

ABM: Abamectin

ABTS 2,2-azinobis (3-ethyl-benzothiozoline)-6-sulfonic acid

ALB: Albumin

ALT: Alanine aminotransferase AST: Aspartate aminotransferase

B.W: Body weight

BAE: Basil aqueous extract
BHT: Butylated hydroxytoluene

BLE: Basil leaves extract

CA: Caffeic acid CAT: Catalase

CCl₄: Carbon tetrachloride CE: Catechein equivalent

Ch: Cholesterol

CHOC: Chinese hamster ovary cells

DDB: Dimethyl diphenyl bicarboxylate

Dex: Dexamethasone

DNA: Deoxyribosenuclic acid

DPPH: 1,1-diphenyl-2-picrylhydrazyl radical

EB: Emamectin benzoate EC: Emulsion concentration

EtOAc: Ethyl acetate

EtOH: Ethanol

FEO: Fennel essential oil

FRAP: Ferric reducing antioxidant power

GABA: Gamma-Aminobutyric acid

GAE: Gallic acid equivalent
GPx: Glutathione peroxidase
GR: Glutathione reductase
GSH: Oxidized glutathione

GST: Glutathione-S-transferase

HDL-C: High density lipoprotein- cholesterol

Hex: Hexane

HOCl: Superoxide anion hypochlorous acid

HPLC: High performance liquid chromatography

Ip: Intraperitoneally

LC₅₀: Median lethal concentration

 LD_{50} : Median lethal dose

LDL-C: Low density lipoprotein- cholesterol

LPO: Lipid peroxidation MDA: Malonyldialdehyde

MET: Methomyl

MOEB: Methanol extract of *Ocimum bacilicum*MOEB: Methanol extract of *Ocimum bacilicum*

O.B: Ocimum basilicum
O.R: Olea europaea
OC: Ocimum canum
OLE: Olive leaves extract
PL: Pancreatic lipase
RA: Rosmarinic acid

ROS: Reactive oxygen species

RSM: Response surface methodology SCGE: Single-cell gel electrophoresis

SDS: Sodium dodecylsulphate SOD: Super oxide dismutase

T.G: TriglycerideT.P: Total proteinTAA: Thioacetamide

TBARS: Thiobarbituric acid reactive substances

CONTENTS

INTRODUCATION
REVIEW OF LITERATURE
1. Effect of biopesticides on biochemical parameters
2. Effect of biopesticides, Ocimum basilicum leaves and Olea
europaea leaves extracts on antioxidant enzyme activities
3. Effect of biopesticides, <i>Ocimum basilicum</i> leaves and <i>Olea</i>
europaea leaves extracts on lipid peroxidation
4 . Effect of biopesticides, <i>Ocimum basilicum</i> leaves and <i>Oleaeuropaea</i> leaves extracts on liver function
a. Aspartate aminotransferase (AST) and alaning
aminotransferase (ALT) activities.
b. Albumin and total protein content
5. Effect of biopesticides, <i>Ocimum basilicum</i> leaves and <i>Olea</i>
europaea leaves extracts on kidney function
a-Urea and creatinine concentration
6. Effect of biopesticides, Ocimum basilicum leaves and Olea
europaea leaves extracts on cholesterol, Triglycerides, HDL
C and LDL-C
7. Effect of biopesticides, <i>Ocimum basilicum</i> leaves and <i>Oled</i>
europaea leaves extracts on DNA fragmentation analysis
8. Effect of Ocimum basilicum leaves and Olea europaea
leaves extracts on Phytochemical screening
9. Secondary metabolite of Ocimum basilicum leaves and
Olea europaea leaves extracts
a. Total phenol and flavonoids content and high
performance liquid chromatography (HPLC) analysis
of Ocimum basilicum leaves and Olea europaea leaves
extracts
b. DPPH and ABTS radical-scavenging activity of <i>Ocimum basilicum</i> leaves and <i>Olea europaea</i> leaves
extracts
MATERIALS AND METHODS
VIAIRKIALS AND WIRLHUDS

1. Materials	39
2. Methods	41
- Methods of analysis	44
- Experimental design	49 50
- Blood samples Liver homogenates	50 50
- Biochemical analysis	51
a. Determination of liver function	
	51
b. Determination of kidney function	54
c Determination of lipid profile	57
d. Determination of Lipid Peroxidation	61
e. Antioxidant enzyme activities	63
- Analysis of liver DNA Fragmentation	69 72
- Statistical analysis	72
RESULTS AND DISCUSSION	73
1. The acute toxicity of tested pesticides male in albino	73
rats	
 2. Phytochemical screening of Ocimum basilicum leaves and Olea europea leaves extracts	74 77
extracts	, ,
4. DPPH scavenging activity of <i>Olea europaea</i> leaves and	
Ocimum basilicum leaves extracts	81
5. DPPH and ABTS scavenging activity at different	
concentration of ethyl acetate extracts of Olea europaea	84
and Ocimum basilicum leaves	
6. Chemical composition of phenolic and flavonoid of	
Olea europaea (OLE) and Ocimum basilicum (BLE)	87
extracts.by HPLC	
7. Biological evaluations	96
a. Liver Functions 1. Influence of emamectin benzoate plus <i>Ocimum basilicum</i> (BLE) and <i>Olea europaea</i> (OLE) on serum ALT and AST activities	96 96
2-Influence of emamectin benzoate plus <i>Ocimum</i> basilicum (BLE) and <i>Olea europaea</i> (OLE) on serum albumin and total protein	102

	b. kidney functions
	- Influence of emamectin benzoate plus <i>Ocimum</i> basilicum (BLE) and <i>Olea europaea</i> (OLE) on
	serum urea and creatinine
(c. lipid profile
	Influence of emamectin benzoate plus <i>Ocimum</i> basilicum (BLE) and <i>Olea europaea</i> (OLE) on serum cholesterol, triglyceride, HDL-c and HDL-c
	- Effect of emamectin benzoate plus <i>Olea europaea</i> (OLE) and <i>Ocimum basilicum</i> (BLE) on MDA
,	e. Antioxidant enzyme activities. - Effect of emamectin benzoate plus <i>Olea europea</i> (OLE) and <i>Ocimum basilicum</i> (BLE) on CAT, SOD and GPx)
	f. Genotoxic effect
	- Influence of emamectin benzoate plus <i>Ocimum</i> basilicum (BLE) and <i>Olea europaea</i> (OLE) on liver DNA fragmentations.
	MMARY
	FERENCES
AR	ABIC SUMMARY

LIST OF TABLES

NO	Title
1	The median lethal doses (LD ₅₀) of emamectin benzoate to male rats
2	Phytochemical screening of <i>Ocimum basilicum</i> extracts.
3	Phytochemical screening of <i>Olea europaea</i> extract
4	Antioxidant activity of total phenol and flavonoid contents of <i>Olea europaea</i> and <i>Ocimum basilicum</i> extracts by ABTS and DPPH method
5	DPPH scavenging activity of <i>Ocimum basilicum</i> (BLE) and <i>Olea europaea</i> (OLE) extracts
6	DPPH scavenging activity at different concentration of ethyl acetate extracts of <i>Ocimum basilicum</i> (BLE) and <i>Olea europaea</i> (OLE)
7	ABTS scavenging activity at different concentrations of ethyl acetate extracts of <i>Ocimum basilicum</i> and <i>Olea europaea</i>
8	Phenolic compounds composition of <i>Ocimum basilicum</i> (BLE) by HPLC
9	Phenolic compounds composition of <i>Olea europaea</i> (OLE) by HPLC
10	Flavonoids compounds composition of <i>Ocimum basilicum</i> (BLE) by HPLC
11	Flavonoids composition of <i>Olea europaea</i> (OLE) by HPLC
12	ALT and AST activities of treated rats with emamectin benzoate and different doses of ethyl acetate extracts BLE after 14 and 28 day
13	ALT and AST activities of treated rats with emamectin benzoate and different doses of ethyl acetate extracts
14	OLE after 14 and 28 day
	acetate BLE after 14 and 28 day

15	Albumin and total protein concentrations for treated rats	
	with emamectin benzoate and different doses of ethyl	
	acetate OLE after 14 and 28 day	105
16	Kidney parameters for treated rats with emamectin	
	benzoate and different doses of BLE after 14 and 28	
	days	110
17	Kidney parameters of treated rats with emamectin	
	benzoate and different doses of OLE after 14 and 28	
	days	111
18	Lipid profile of treated rats with emamectin benzoate	
	and different doses of ethyl acetate of BLE	118
19	Lipid profile of treated rats with emamectin benzoate	
	and different doses of ethyl acetate of OLE	119
20	Liver antioxidant enzyme (SOD, CAT and GPx)	
	activities and lipid peroxidation (MDA) of treated rats	
	with EB and different doses of BLE	129
21	Liver antioxidant enzyme activities (SOD, CAT and	
	GPx) and lipid peroxidation (MDA) of treated rats with	
	EB and different doses of OLE	131
	LD and different dopen of OLD	10

LIST OF FIGURES

NO	Title	Pag
1.	The median lethal doses (LD50) of Emamectin Benzoate to male rat.	74
2.	Standard curve of trolox for ABTS	78
3.	Standard curve of trolox for DPPH	78
4.	Standard curve of total phenolic compound (Gallic acid)	80
5.	Standard curve of total flavonoid compound (Catchine)	81
6.	DPPH scavenging activity of OLE and BLE	83
7.	DPPH scavenging activity of OLE and BLE ethyl acetate extract	86
8.	ABTS scavenging activity of OLE and BLE ethyl acetate extract	87
9.	ALT and AST activities for treated rats with EB and	
10	different doses of ethyl acetate BLE after 14 and 28 days.	99
10.	ALT and AST activities for treated rats with EB and	00
11	different doses of ethyl acetate OLE after 14 and 28 days	99
11.	Albumin and total protein content of treated rats with EB and different doses of ethyl acetate BLE after 14 and 28	
	days	106
12.	Albumin and total protein content of treated rats with EB	100
12.	and different doses of ethyl acetate OLE after 14 and 28	
	days	106
13.	Urea concentration of treated rats with EB and different	
	doses of ethyl acetate BLE after 14 and 28 days	112
14.	Creatinine concentration of treated rats with EB and	
	different doses of ethyl acetate of BLE after 14 and 28	
	days	112
15.	Urea concentration of treated rats with EB and different	
	doses of ethyl acetate OLE after 14 and 28 days	
		113
16.	Creatinine concentration of treated rats with EB and	
	different doses of ethyl acetate OLE after 14 and 28	
. -	days	113
17.	Ch and T.G concentration of treated rats with EB and	100
	different doses of ethyl acetate BLE after 14 and 28days.	120

Ch and T.G concentration of treated rats with EB and different doses of ethyl acetate OLE after 14 and 28 days	18	HDL-c and LDL-c concentration of treated rats with EB and different doses of ethyl acetate BLE after 14 and 28	101
 20. HDL-c and LDL-c concentration of treated rats with EB and different doses of ethyl acetate OLE after 14 and 28 days	19	Ch and T.G concentration of treated rats with EB and different doses of ethyl acetate OLE after 14 and 28	121
Liver lipid peroxidation (MDA) of treated rats with EB and different doses of ethyl acetate BLE after 28 days Liver lipid peroxidation (MDA) of treated rats with EB and different doses of ethyl acetate OLE after 28day Liver antioxidant enzyme activity (GPx) of treated rats with EB and different doses of ethyl acetate BLE after 28 days Liver antioxidant enzyme activity (SOD)) of treated rats with EB and different doses of ethyl acetate BLE after 28 days	20.	HDL-c and LDL-c concentration of treated rats with EB and different doses of ethyl acetate OLE after 14 and 28	121
and different doses of ethyl acetate OLE after 28day 12 23. Liver antioxidant enzyme activity (GPx) of treated rats with EB and different doses of ethyl acetate BLE after 28 days		Liver lipid peroxidation (MDA) of treated rats with EB and different doses of ethyl acetate BLE after 28 days	125
days		and different doses of ethyl acetate OLE after 28day Liver antioxidant enzyme activity (GPx) of treated rats	126
 Liver antioxidant enzyme (CAT) of treated rats with EB and different doses of ethyl acetate BLE after 28days Liver antioxidant enzyme (SOD) of treated rats with EB and different doses of ethyl acetate OLE after 28 days Liver antioxidant enzyme (GPx) of treated rats with EB and different doses of ethyl acetate OLE after 28 days Liver antioxidant enzyme (CAT) of treated rats with EB and different doses of ethyl acetate OLE after 28 days DNA fragmentation of treated rats with EB and different doses of ethyl acetate BLE after 28 days DNA fragmentation of treated rats with EB and different doses of ethyl acetate BLE after 28 days DNA fragmentation of treated rats with EB and different 	24.	days	129 130
 Liver antioxidant enzyme (SOD) of treated rats with EB and different doses of ethyl acetate OLE after 28 days Liver antioxidant enzyme (GPx) of treated rats with EB and different doses of ethyl acetate OLE after 28 days Liver antioxidant enzyme (CAT) of treated rats with EB and different doses of ethyl acetate OLE after 28 days DNA fragmentation of treated rats with EB and different doses of ethyl acetate BLE after 28 days DNA fragmentation of treated rats with EB and different doses of ethyl acetate BLE after 28 days DNA fragmentation of treated rats with EB and different 	25	Liver antioxidant enzyme (CAT) of treated rats with EB	130
and different doses of ethyl acetate OLE after 28 days 28 Liver antioxidant enzyme (CAT) of treated rats with EB and different doses of ethyl acetate OLE after 28 days 29 DNA fragmentation of treated rats with EB and different doses of ethyl acetate BLE after 28 days	26	and different doses of ethyl acetate OLE after 28 days	132
and different doses of ethyl acetate OLE after 28 days 29 DNA fragmentation of treated rats with EB and different doses of ethyl acetate BLE after 28 days		and different doses of ethyl acetate OLE after 28 days	132
doses of ethyl acetate BLE after 28 days		and different doses of ethyl acetate OLE after 28 days	133
doses of ethyl acetate BLE after 28 days		doses of ethyl acetate BLE after 28 days DNA fragmentation of treated rats with EB and different	138
		doses of ethyl acetate BLE after 28 days	139

#